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Executive Summary 
The goal of task T3.3 “Integrated Querying of Streaming Data and Data at Rest” is to implement a 
data framework that can provide a unified manner for accessing data that can be considered both 
streaming and data-at-rest at the same time, while being able to correlate data coming from those 
different types of data sources. This data framework aims to overcome the existing obstacles that 
are observed in current solutions. Even if currently available solutions state that they enable the 
provision of real-time business intelligence (BI), they often provide something near real-time due to 
the inherit limitations of the tools they rely on. The important challenge that INFINITECH unified 
query framework aims to solve is to provide actual real-time BI that is crucial in a variety of use cases 
that the INFINITECH platform supports, such us real-time risk assessment, transaction fraud 
detection, money laundry, etc. 

 

The INFINITECH unified query processing framework will rely on one of the popular streaming 
processing tools, extending it with SQL operators that will enable the correlation of streaming data 
with data at-rest, removing the barriers for real-time processing. This will be achieved by reading 
data from the platform’s data management layer and performing cost-demanding analytical 
operations in cost effective manner that can be used as a streaming operator, or by allowing the 
data ingestion of streaming data to the persistent storage, modifying its content while at the same 
time, ensuring transactional semantics. Towards this direction, this task will exploit the outcomes of 
other tasks related with the data management layer of INFINITECH, and more precisely, the ultra-
scalable transactional management and the Hybrid Transactional and Analytical Processing (HTAP) 
provision, the declarative online data aggregations, and potentially the polyglot extensions of the 
platform. The outcome of those tasks will constitute the basic pillars that will be utilized by the 
operators implemented in the scope of this task, which will allow the unified query processing 
framework to provide real-time BI. 

 

This deliverable describes the initials steps required for the INFINITECH unified query processing 
framework design and implementation. At this phase of the project, an initial analysis of the state-
of-the-art in the field of data streaming processing has been conducted in order to decide which of 
the proposed solutions would be better suited to be used as the core of the framework. Based on 
this decision, an initial design of the operators that will extend the proposed data streaming 
processing has been made, that will drive the actual implementation during the second phase of the 
project. This was necessary as those operators rely on the outcome provided by other technical tasks 
of WP3 and WP5, leading the implementation to be initiated at the second phase of the project 
(M12-M20). As a result, two more versions of this deliverable will be released at M20 and M27 that 
will report the additional work that will be carried out in the corresponding phases.  
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1. Introduction 
Finance and insurance institutions utilize static data that are persistently stored in a database 
management system, often called as data-at-rest, in order to extract information via analytical tools 
and AI algorithms that rely on historical data. Therefore, their analysis is executed as a batch 
process, once the tool or algorithm is being invoked, relying on the data that are persistently stored 
in the datastore at that exact point in time, which does not always reflects the situation at the same 
point in time. In addition, as explained in D3.1, organizations that utilize Big Data tend to use Extract, 
Transform, Load  (ETLs) periodically in order to move data from their operational datastores to a 
data warehouse, where they perform their analytics. As a result, the latter make use of a snapshot of 
the dataset that was taken at the specific point in time when the ETL process moves the data to the 
warehouse. This can pose an issue in cases where an enterprise needs to be aware of potential risks 
or opportunities in order to adapt and exploit them at the time when they happen. In finance and 
insurance sectors there are many cases where the time window to perform an action is narrow and 
performing analysis on yesterday’s data can hinder effective courses of action. Such examples in the 
finance sector include risk assessment analysis, where a financial organization might need to provide 
detailed risk information regarding the management of an asset in real-time, otherwise an 
investment opportunity could be lost. Another example can be noticed in fraud detection 
mechanisms, where the identification of a fraud transaction must be done exactly the moment when 
the transaction takes place, since analyzing the historical transactions of the previous day could 
prove ineffective. Moreover, in the scope of the insurance sector, taking IoT sensor data coming 
from devices, either from vehicles or from people’s smart phones could prove crucial to occur in real 
time since utilizing historical data could result in losing the opportunity to extract vital information at 
the time that the data are produced. Those scenarios are observed often in financial institutions and 
the insurance sector and pose typical challenges to many of the organizations of these sectors. They 
are also listed as typical user requirements from the pilots of the INFINITECH project, as they have 
been addressed in the corresponding deliverables of T2.1. 

 

Due to the need of real-time data analytics, streaming processing systems have been widely used 
during recent years. The emergence of IoT, where data are being continuously produced by various 
sources (either a hardware sensor that is physically installed or data generated after an online 
transaction) has led organizations having different types of streams being accessed by their systems. 
In order to utilize this new types of data, various data streaming infrastructures have been 
developed that allow application developers and data analysts to perform some query processing on 
top of the stream. In contrast with traditional database management systems where data are 
persistently stored and considered at-rest, where queries are submitted dynamically and produce 
results in a request-response manner, the nature of the streaming processing is different. Queries 
are statically submitted and make use of dynamic data (coming from the stream) often called data 
in-flight, and thus, they are considered continuous. As queries are not dynamic, there is no request-
response type of interaction, rather than once a continuous query has been submitted, it 
continuously generates results. Queries might be stateless where no previous information might be 
needed. Examples can be found in scenarios where a financial organization needs to check if the 
amount of an online transaction exceeds a specific threshold. In case it does, this event might trigger 
additional actions from the organization to examine the transaction details and potential fraud 
activities. Typically, those queries only require comparison of the current data coming from the 
stream with a static value. However, as data is being processed in real-time, it allows the financial 
institution to react instantly, without having to perform this type of analysis on obsolete data 
coming from a snapshot taken in the past. Additionally, continuous queries might be stateful and 
require some timestamp information that has been collected from data being passed through the 
stream channel previously. Usually, a time window is being maintained that allows for aggregated 
operations to take place. An example will be to produce an alert if the value of a data element 
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coming through the stream is bigger than the average value of all data elements that have been 
passed during the last minute, hour, etc. This reveals potential current trends and might be useful in 
scenarios, for example, where a lot of investors choose to buy a specific stock or other investment 
product, or if clients decide to massively withdraw money from their accounts, or move their money 
to other products, which might be the case of a bank run due to a potential currency devaluation as 
the global economic crisis that started in 2008 showed. The streaming processing framework 
calculates the aggregated values of money transfer in the last minute or hour and might generate an 
alert to the financial institution in case massive money transfer occurs. It is obvious that if the 
financial institution had to rely on a periodic batch processes using other types of analytical tools on 
an obsolete dataset, the results might be catastrophic for the institution which could face hazardous 
liquidity issues.  

 

It has been highlighted how those two different types of processing, data at-rest and streaming data, 
can solve different types of problems addressed by the finance and insurance sector. Dynamically 
submitted queries at data at-rest can feed machine learning (ML)/Deal learning (DL) algorithms 
taking into account all historical data stored in a persistent medium like a data warehouse, but 
cannot record changes or trends happening in real-time. On the other hand, static continuous 
queries can generate events to which an organization can respond immediately. However, they can 
only rely on a narrow time window and cannot take into account the existence historical data. One 
of the current challenges arising during recent years is the ability for query processing that involves 
both worlds: data at-rest and streaming data. This can enable real-time business intelligence (BI) 
where i) streaming processing can be combined with the results of an analytical processing or ii) 
streaming data can be directly ingested in a data warehouse, and the AI algorithms can rely on fresh 
data. However, both approaches come with their limitations and can only provide near real-time BI 
due to various inherit obstacles. In order to collate streaming processing with aggregate/analytical 
queries targeting data stored in a database, it requires the latter to be executed first, get the result, 
and compare the result with the streaming data element on the fly. However, aggregate and 
analytical queries on a dataset need a scan operation, meaning that the majority of a dataset must 
be accessed first. Typically, these types of queries are costly, and therefore, cannot be used in 
streaming processing, where the latency must be very low. To overcome this inherit obstacle, 
traditional approaches often cache those results in memory and periodically update their values. 
This breaks however the data consistency, which is of major importance in the financial sector, as 
data is outdated. Ingesting data from a stream to a persistent storage and performing analytical 
queries in the datastore itself, comes with other obstacles. Traditional database systems cannot 
handle such an increased operational workload coming from a data stream, as they cannot scale out 
effectively. Due to this, system architectures either rely on NoSQL database systems, losing however 
transactional semantics and data consistency, or tend to add data coming from a stream to a data 
queue, and then periodically perform batch ingestion on the database. The latter approach leads to 
the use of near real-time BI, while the pilot use cases of INFINITECH aim to go a step beyond and do 
analytics on data, as they arrive.  

 

The task T3.3 “Integrated Querying of Streaming Data and Data at Rest” aims to solve the mentioned 
problems: providing a unified framework that allows application developers and data analysts to 
perform analytics taking into account data elements coming from both worlds. This means 
correlating streaming tuples with data at-rest in both ways: reading from a persistent storage and 
correlating the results with data coming from a streaming channel and using data streams to update 
and modify the contents of a persistent datastore.  
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1.1. Objective of the Deliverable 

The objective of this deliverable is to report the work that has been done in the context of the task 
T3.3 at this phase of the project (M11). This task lasts until M27, and therefore, two more versions 
will be released, extending and modifying when necessary the content of this document, following 
the agile approach for system development and aiming to update the solution and implementation 
with the current trends of the environment as the project progresses. The work that has been done 
during this phase (M03-M11) was mainly focused on the experimentation of various streaming 
processing frameworks that are currently being used in the industry, in order to decide which of 
those engines the INFINITECH unified query processing framework will rely on. Based on this 
preliminary work that was essential for this task, the initial design of the data operators that will 
allow the correlation of data elements from both worlds took place. The correlations themselves are 
relying on the outcomes of the various tasks that are related with the data management layer, as 
their implementations provide the basis for the implementation of the task T3.3 to happen.  
According to the designated plan, the actual implementation will take place the forthcoming period, 
and this deliverable reflects the initial design at this phase of the project. 

 

1.2. Insights from other Tasks and Deliverables 

As the majority of the deliverables of WP3, the work that is reported in this document is based on 
the overview description of the corresponding task T3.3, which has been further specified in more 
detail at WP2, which is the fundamental work package that defines the overall requirements of the 
whole platform. T2.1 defines the user stories of the pilots that drive the necessity of this task, while 
T2.3 defines the specification of the overall technologies that INFINITECH provides and need to 
interact with the unified query processing framework. T2.5 describes the available datasets that 
need to be tackled by this component while T2.7 puts the component under the general context of 
the INFINITECH Reference Architecture. Regarding the technical tasks of the project, T3.3 is relying 
on scalable transactional processing of the INFINITECH data management layer, as described in the 
corresponding deliverables of T3.1, along with the Hybrid Transactional and Analytical Processing 
(HTAP) capabilities that this task provides. Moreover, as explained in the corresponding deliverables 
of T3.2, the polyglot processing is an extension of the data management layer, and therefore, this 
task can exploit its outcomes in order to correlate streaming data with data stored in external data 
sources. In addition, T3.3 will also exploit the outcomes of T5.3 and its declarative live aggregation 
mechanisms that will allow the execution of cost-demanding aggregation operations with O(1) 
complexity, and hence, making it possible to correlate streaming data with this type of information. 
Finally, T3.3 will provide valuable input to T3.4, whose scope is to provide automated parallelization 
of data streams that will rely on the operators implemented in this task. 

 

1.3. Structure 

This document is structured as follows: Section 1 introduces the document and section 3 provides 
concrete examples on how the outcomes of T3.3 can be utilized by the pilots of the INFINITECH 
project. Then section 3 provides the state-of-the-art analysis of existing solutions for complex event 
processing and data streaming frameworks, highlighting the existing barriers of those solutions to 
provide real time business intelligence. Section 4 analyses how the technological achievements of 
INFINITECH can be used as enablers to overcome those barriers. Based on the output reported in 
sections 3 and 4, section 5 describes the design of the SQL operators that will be implemented in 
order to extend the streaming processing framework to correlate streaming data with data at-rest. 
Finally, section 6 concludes the document and addresses next steps. 
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2. Relation with INFINITECH use case scenarios 
 

In the fast-moving financial domain, it is critical to maintain up-to-date analytics over financial 
markets. Such analytics are used by a wide range of both human and AI traders continuously 
throughout each day. However, in practice, these analytics are not as simple as tracking a stock or 
share price. Instead, more complex metrics are needed that compare real-time market changes with 
long-term historical trends, whilst also incorporating the current position/exposure of the individual 
trader. For example, a common metric used by financial traders around the world is Value at Risk, 
which measures the potential risk of the trader’s current investments by analysing the variance of 
the associated assets over different time horizons (that can involve years’ worth of data points). 

 

Metrics like Value at Risk raise a number of computational challenges, as they require both real time 
market data streams (data-in-flight) to remain current, but also need large quantities of historical 
data (data-at-rest) to provide meaning in context. Decades of research into stable database solutions 
have produced a range of good quality products to manage data-at-rest, including MongoDB, 
MySQL, PostgresSQL, LeanXcale, among others. Meanwhile, although less mature, a number of 
streaming platforms for processing data-in-flight have been under development over the last 10 
years, such as Apache Storm or Apache Flink. However, the architectures of such databases and 
streaming platforms are very different and are not designed to be compatible. Hence, developing 
applications that require seamless integration of both databases and streaming platforms is very 
difficult and requires significant specialized expertise. 

 

Task 3.3 in general aims to make such integration easier for the applications within the financial 
domain, by producing a framework for orchestrating the aggregation of data-in-flight (streaming 
data) and data-at-rest (i.e. historical data within an SQL database).   

 

2.1 Problem Dimensions 

 

It is first worth noting that there is a large space of possible ways that an application developer 
might want to aggregate data-in-flight with data-at-rest. For example, a streaming select involves 
taking each item that arrives on an input stream and performing a SQL SELECT operation for that 
item, before sending both the item and the query return on an output stream. Meanwhile, a 
windowed timeseries function involves periodically performing a local analytics function on a small 
streaming data window, writing the result to a database, and then retrieving the window timeseries 
for a longer time period to calculate an aggregate measure. Furthermore, the appropriate solution 
will also be based on a range of environmental factors, such as whether it is possible/desirable to 
continuously store the incoming data streams, the available compute capacity that can be allocated 
to each individual stream, along with expected storage and network latencies. Hence, to better 
organize T3.3, we structure the problem along the following dimensions: 
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Table 1: Problem Dimensions 

Dimension Value Description 

Processing Type Per-Item The user is looking to augment an item that has 
arrived on a stream with associated data in a 
database 

Windowed The user is looking to perform calculations over 
a series of time windows, where a subset of 
those windows is stored in a database 

Outcome Writing True Once the calculation is finished, the outcome 
needs to be stored in a database 

False The calculation is read-only on the database 

Stream Writing True The raw contents of the data stream will be 
stored in a database 

False The stream contents are not stored 

Computation Locality Streaming Platform All significant computation is performed within 
the streaming platform (the database is used 
only for basic data lookup)  

Streaming Platform 
& Database 

Computation is shared between the streaming 
platform and database 

 

Importantly, developing a technology that is able to solve all dimension combinations is out of the 
scope of T3.3. Instead, we focus on a sub-set of dimension combinations that align with the 
INFINITECH pilots that require such a technology, which we discuss in the next section. 

 

2.2 The Case of Real time Risk Assessment in Investment Banking 

 

The high-level aim of this case is to provide bank traders real-time information about financial assets 
they may wish to trade, ultimately enabling improved decision making and hence profit margins for 
their customers. Currently, trading information and future predictions are updated infrequently 
(once a day), meaning that traders are unable to exploit rapidly changing market conditions. this 
case should solve this issue by providing a solution that can aggregate market data, trends and 
provide predicted risk/yield estimates that update in real-time. 

Within the wider trading platform that this case supports, one component that requires data-in-
flight and data-at-rest to function is asset risk estimation. The goal of this component is to monitor 
the stream of financial asset costs and the current exposure of the trader to those assets (i.e. how 
much the trader has invested), and then calculates a range of risk metrics. This is used to help 
traders track the short and long-term risks of particular investments or their broader portfolio.    

To illustrate, we will use the example of one very common metric, Value at Risk (VaR). The aim of 
VaR is to determine the potential loss for an asset and the probability that the loss will occur. The 
primary input to VaR is the return on an asset (how profitable it is) over time. This is expressed by a 
very large numerical timeseries spanning millions of data points per year for each asset. This is 
combined with various parameters, such as the target time period to calculate VaR over, as well as 
the current exposure of the trader. The calculation of VaR (and similar metrics) is costly, particularly 
when calculating for long time periods with high datapoint counts, or if performing a significant 
forward projection. Moreover, if the underlying return for an asset changes rapidly, then the trader 
will want to be notified of the increased VaR (i.e. estimated risk) with very little latency, such that 
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they can take remedial steps. However, constantly re-calculating VaR from first principles for 
potentially hundreds of thousands of assets is not feasible. 

On the other hand, it is possible to substantially reduce the cost of the VaR calculation through 
incremental calculation of its constituent components (the mean and standard deviation of the asset 
return timeseries) across smaller time windows. This can be achieved using a streaming platform 
that buffers datapoints into fixed time windows and triggers processing once each window is full. 
However, a streaming platform itself cannot safely store the resultant intermediate outcomes as 
they are designed to be stateless. Hence, the intermediate outcome from each window needs to be 
stored into a database and made accessible such that VaR can be rapidly calculated for a target time 
period. The challenge then from the database side is to provide sufficiently fast writes for the new 
windows as they are created, while also enabling very low-latency querying of the stored window 
data for each asset such that VaR can be re-calculated for tens of thousands of assets minute-by-
minute. 

 

Error! Reference source not found. illustrates the structure of this process for FX assets (currency 
trading) when combining data-in-flight and data-at-rest. As we can see, a high-volume data stream 
of currency prices continually arrives at the left hand side, comprised of <asset, timestamp, value> 
tuples. This stream is then sub-divided into one stream per-asset. The streaming platform will then 
buffer the updates for each currency price into fixed time windows (in this example a 5 minute 
window length). Once the buffer period has elapsed, a trigger starts the calculation of the 
intermediate components needed for VaR, i.e. the mean and standard deviation of the updates 
within the window, that are then stored within a database. Depending on the desired variants of 
VaR the user wants, the required window data is loaded from the database and those variants of 
VaR are calculated and then emitted for downstream consumption by the user. 

 

 

 

Figure 1: Example of VaR calculation process for FX data streams 

 

Considering the dimensions discussed earlier, this is a windowed process, i.e. it relies on 
intermediate calculation over time windows, and the computation is primarily performed within the 
Streaming Platform. Meanwhile, calculation outcomes are being written (means and standard 
deviations), but the raw stream is not.  

 

This is a proposed solution for a general case application coming from the insurance sector targeting 
risk assessment analysis on real-time. However, we designed in a more generic manner in order to 
apply the same patterns to other scenarios coming from both the insurance and finance sector. 
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INFINITECH has 15 pilot cases, where many of them require streaming processing technologies, as 
identified in the user stories provided by T2.1 Therefore, we will take advantage of those pilots 
during the evaluation phase to verify if the proposed framework that we present in this deliverable 
can be beneficial to them. 
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3. State-of-the-Art Analysis on Data Streaming Technologies and 
Complex Event Processing 

Big data analytics is a key area for businesses and the public sector alike, enabling the analysis of 
huge amounts of data to draw business insights and discover new, innovative ideas, technologies 
and solutions. By utilizing big data analytics and artificial intelligence, businesses and organizations 
can support their BI, adopting new data driven decision-making tools and shifting strategic planning 
processes. 

 

The data collected by the various systems day by day are rapidly increasing and that makes it 
difficult to store them in known relational and non-relational business’ databases but also, to apply 
data mining tools and techniques directly on big data streams. Thus, nowadays it seems that 
streaming data processing, the technology that started to develop more than 20 years ago, has a 
greater value than ever. In 1992, the Tapestry system has introduced the notion of streaming 
queries, and by then, various technologies of streaming processing have been developed per 
generation of streaming systems. 

3.1 Data Streaming Technologies and their Generations 

Starting with the first generation, the applications that have been developed in the early 00s used 
centralized stream processing engines such as Stream [1], Aurora [2] and TelegraphCQ [3]. These 
engines provided window-based query operators that execute continuous queries over relational 
data streams. While these engines supported principled relational query models, e.g. as proposed 
through the Continuous Query Language (CQL) [4], they lacked support for parallel data processing, 
making them inapplicable in Big Data scenarios.  

 

With the increase of stream rates and query complexity, a second generation of stream processing 
engines became distributed in order to harness the processing power of a cluster of stream 
processors. Systems such as Borealis [5], Gigascope [6], and InfoSphere Streams [7] permit inter-
operator parallelism for continuous queries, that is, one query can be executed on multiple 
machines. Such systems exploit task-parallelism, i.e. they execute different operators on different 
machines and allow the execution of many different continuous queries in parallel. InfoSphere 
Streams supports intra-query parallelism through a fine-grained subscription model, which specifies 
stream connections, but management is manual.  

 

As a result, the third generation of stream processing engines focus on intra-query parallelism, 
parallelizing the execution of individual query operations. StreamCloud [8], Apache S4 [9] and Storm 
[10] express queries as directed acyclic graphs with parallel operators interconnected by data 
streams. StreamCloud parallelizes stateful queries at runtime also providing intra-operator 
parallelism. It uses a query compiler to synthesize high-level queries into a graph of relational 
algebra operators. StreamCloud also provides elasticity. It uses hash-based parallelization, which is 
geared towards the semantics of joins and aggregates. S4 schedules parallel instances of operators 
but does not manage their parallelism. Storm allows users to specify a parallelization level and 
supports stream partitioning based on key intervals, but it cannot scale out the computation at 
runtime. This makes it hard to support unknown Big Data analytics tasks when the computational 
expensive of operators is not known beforehand. Schneider et al. [11] adds elastic operators to the 
SPADE language, which gradually finds the optimal number of threads for stateless processing with 
maximum throughput. Spark Streaming [12] parallelizes streaming queries by running them on the 
Spark distributed dataflow framework using micro-batching. With micro-batching, the streaming 
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computation is executed as a series of short-running Spark jobs. Each Spark job outputs incremental 
results based on the most recent input data. A limitation of such an execution model is that it makes 
it challenging to support arbitrary window semantics for continuous queries and in particular sliding 
windows. The Stratosphere project [13] has developed a distributed dataflow framework that can 
execute data-parallel batch and streaming processing jobs on the same platform. Computation is 
described as dataflow graphs, which are optimized using existing database techniques. The results of 
the Stratosphere project were made available through the open-source Apache Flink [14] platform 
now exploited by the German startup Data Artisans and the only competitor to Apache Spark made 
by the American startup DataBricks. All the above platforms assume that stream processing 
operators are stateless, which simplifies scalability and failure recovery. However, this means that 
streaming queries cannot express complex analytic tasks such as data mining and machine learning 
algorithms that incrementally refine a model.  

 

To address this problem, the fourth generation of stream processing engines adopt a stateful stream 
processing model. Platforms such as Apache Samza [15] and Naiad [16] execute streaming operators 
in a data-parallel fashion while allowing operators to have access to mutable in memory state. For 
example, the state of a continuous query can be a machine learning model that is trained with new 
incoming data. These stateful stream processing platforms therefore support the execution of 
analytical applications that maintain historic data while continuously processing new data. Some of 
these fourth-generation streaming engines rely on the concept of Stateful Dataflow Graphs (SDGs) 
[17]. An SDG contains vertices that are data-parallel stream processing operators with arbitrary 
amounts of mutable in-memory state, and edges that represent the stream. SDGs can be executed in 
a pipelined fashion so to have a low processing latency. All operators are assigned to machines in the 
cluster and the parallelization level for each operator is automatically decided by the system. 

 

Today, some of the top tools often used for real-time data streaming processing are Apache Storm, 
Apache Spark, Apache Flink, Amazon Kinesis [18], Apache Samza and IBM InfoSphere Streams. Below 
is an extended analysis of these tools. 

 

3.1.1 Apache Storm 

Built by Twitter, Apache Storm [10] specifically aims at the transformation of data streams and it is 
useful for ETL, online machine learning, continuous computation, and many other things. The 
foremost capability of Apache Storm is faster data processing that can carry out processes at the 
nodes with faster data processing than other tools do, combined with very low latency. However, 
Apache Storm is known to have a few drawbacks such as that it is only suited for data which are 
ingested as one entity and it cannot guarantee that the data will be processed only once, and thus 
may compromise reliability.. 

 

3.1.2 Apache Spark 

Spark [12] is an general-purpose distributed cluster computing framework. It is known for its in-
memory processing capabilities where its engine conducts analytics, ETL, machine learning, and 
graph processing on data in motion or at rest. It is not actually a real-time system, but it processes in 
the micro-batches at a defined interval. It offers high-level APIs for different programming languages 
and when it has some latency, which eliminates some real-time analytics use cases, it makes sure 
that the data is processed in a trustworthy manner.  
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4. INFINITECH Enablers for SQL Operators over Streaming Data  
As it has been in the previous section, modern streaming processing frameworks nowadays provide 
the ability to correlate data at-rest with data coming from a streaming channel. They offer a variety 
of operators that enables a data analyst to apply processing methods on the stream, using either 
CEP built-in functions or high level data frames. In the latter case, streams are transformed into 
unbound virtual tables that can be consumed by SQL-alike operators, or other operators. This level 
of virtualization of the data, allows for streams to be expressed as tables, and thus, being correlated 
with static data that are also expressed in tabular format. The sources of the static data can vary 
from static files, to database management systems and other source of persistent storage. All those 
have to implement a specific connector in order for the streaming processing framework to be able 
to retrieve and store data to the target source.  

 

Although the ability for correlating static data with streaming process is not novel, there are various 
barriers that prevent those frameworks to deliver real-time BI. Those limitations are usually 
introduced by the persistent storage elements, which are either unable to handle data ingestion in 
very high rates, or they can insufficiently execute data retrieval operations, due to the high latency 
that a scan operation requires. Regarding the latter case, a typical scenario can be to compare a 
streaming tuple with an aggregated value: For instance, the value of a finance transaction might 
need to be checked against the overall average of finance transactions that have taken place during 
the last defined period of time. However, this operation requires firstly a scan of a data partition, 
which typically is costly. In order to overcome this, usually there are two approaches: The first one is 
to cache this value, with the drawback that the average value is not consistent, which is not 
acceptable in use cases coming from the finance sectors. The second approach is to create a virtual 
table with the target dataset and apply the aggregation in memory. This has two benefits It is much 
more effective, as all calculations take place in memory, which is less time consuming, and, 
continuous updates and data modifications can be applied to the common shared dataset. However, 
restrictions on the overall size of the memory of the dataset and insurance of the transaction 
semantics are a significant drawback. 

 

Regarding operational workloads, modified data arriving in high rates must be stored in a persistent 
volume. Traditional database management systems usually are incapable to handle these loads, due 
to the enforcement of transactions. As the rates goes high, the transactional management 
subsystem of the database needs to scale out, in order to serve these loads. However, the 
distribution of transactions is hard to be achieved, as the traditional implementations make use of 
the two-phase-locking protocol, which cannot be distributed by design. To make things worse, 
operational workloads cannot be combined with analytical processing, as the one blocks the other. 
To overcome this problem, data ingestion is targeting operational datastores, while ETLs are used to 
periodically move data to a data warehouse. By doing this, it is possible for a streaming processing 
framework to ingest data to one datastore element and use the data warehouse for analytical 
operations. As data in the warehouse are added periodically by the execution of the ETL, the data 
can be considered as non-modified, can be cached in memory of the streaming engine. This leads to 
have a near real-time BI, as the processing takes into account a snapshot of the dataset that has 
been retrieved in the last invocation of the ETL. This is often not enough in modern cases coming 
from the finance sector, where real-time identification of potential opportunities or mal-detections 
is the requirement.  

 

As it can be concluded, it is hard for a data analyst to make use of a streaming processing framework 
in order to correlate static and streaming data for real-time analytics. Towards this direction, the 
INFINITECH platform provides enablers that can be used in order to overcome those obstacles. As a 
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result, instead of using virtual or materialized views over a dataset that allows the execution of table 
functions and SQL queries over correlated streaming data and data at-rest, while at the same time 
apply possible data modifications on the view, the whole architecture can be much more simplified: 
we can have the direct use of a data table of the data management layer. The latter can allow for the 
streaming framework to delegate the requirements for data consistency to the database. The data 
management layer offers specific enablers that aim to overcome the obstacles introduced by the 
need for persistent storage. 

4.1 Hybrid Transactional and Analytical Processing 

Hybrid Transactional and Analytical Processing is a first-class citizen in the overall data management 
layer of INFINITECH. As it has been reported in the corresponding deliverables of task T3.1, the 
purpose of this enabler is twofold: Firstly, it allows for the combined execution of operational and 
analytical workloads, which is crucial when there is the need for real-time business intelligence. This 
removes the necessity for moving data from the transactional datastore to a data warehouse. It is 
based on the removal of all data locks that are needed by traditional implementations to enforce 
data consistency on transactions that are being executed in parallel. The lack of data locks allows for 
an analytical operation to perform a scan over the whole dataset (which is typically the case when 
we need to calculate an aggregated value) without being blocked by data modification operations 
that put the locks. That way, the data analyst or application developer does not have to create and 
maintain in memory specific virtual or materialized views, which are used by the streaming 
frameworks to share this information across streaming sessions, and delegates this responsibility to 
the lower layer that has been designed to serve this. In addition, the need to maintain the state 
across sessions and share it across the different deployment nodes is removed, along with the 
restriction for the size of the view due to memory limitations of the deployment. 

 

Complementary to the above is the ability of the INFINITECH data management layer to handle very 
high rates of data ingestion. Due to its highly scalable transactional management system, it can be 
scaled out linearly to hundreds of nodes. As a result, it can serve hundreds of thousands of 
transactions per second, without being a bottleneck. This innovation of the platform allows the 
ingestion of data to be handled on the runtime, avoiding the need to push the incoming data for a 
temporal persistent and fault-tolerant queue (e.g. Apache Kafka). The approach that involves a data 
queue demands a consumer process that periodically gets data from the queue and puts them to 
the persistent storage in a batch. As a result, data are being ingested periodically in mirco-batches, 
and this design downgrades the real-time processing to near real-time. 

 

4.2 Online Aggregations 

Another obstacle that appears when correlating streaming data with data at-rest is the need to 
combine the value of a tuple coming from the streaming channel with an aggregated value of the 
data already stored. Requesting the min/max/average value of a dataset to be used in a later 
comparison firstly requires the scan of the data table in order to retrieve the aggregated value. 
Having the dataset in a persistent storage will require lots of I/O operations to that volume, which is 
time consuming with a significant latency. To overcome this problem, data are being cached into 
memory where this value has been pre-calculated in advance. The drawback of this technique is in 
the case of datasets that are being modified frequently; we lose the data consistency, as the 
aggregated value will be outdated. Materialized views are usually used to deal with this 
requirement; however, each aggregated operation has to be calculated again each time the dataset 
is being modified. Even if this calculation takes place in memory, introducing serious barriers 
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regarding the overall size of the dataset, it is computational intense. INFINITECH provides the ability 
to execute online aggregations, which means the value can be retrieved online at runtime. In 
contrast with the need for a scan operation and the calculation of the aggregated value by 
calculating all involved records, INIFINITECH’s data management layer maintains an additional 
record for each involved value. The calculation is being performed on the fly, as a new record 
arrives. Instead of having to check the value of each record of the scan, the platform relies on delta 
operators that have been implemented in the scope of task T5.3. As a result, the value has been pre-
calculated and the complexity for data retrieval is only O(1), which is the minimum we can get. 
Furthermore, being already integrated with the transactional management component of the 
platform, it is ensured that the value is consistent in terms of transactional semantics. This will 
remove the necessity for the streaming processing framework to maintain such expensive in terms 
of resource usage and time consuming views, and downgrades this to the lower layer. More details 
regarding the implementations of the online aggregators can be found in the corresponding 
deliverables of T5.3. 

 

4.3 Polyglot Capabilities 

We can consider a third obstacle, the necessity to correlate static data coming from different data 
sources. Most of the streaming processing frameworks implement a variety of join operators that 
can be used to get data from various sources and correlate the results between them and among 
streaming channels. However, a join operator usually requires to get into memory a significant 
amount of data that needs to be used for the outer operator of the operation itself. INFINITECH’s 
polyglot component can be used instead, so that the data analyst and application developer can 
write a simple select-from statement to get the corresponding result set. By doing this, she pushes 
down to the data management layer of INFINITECH the execution of this join, removing the need 
from the streaming processing to maintain all data in memory. As explained in the corresponding 
deliverables of T3.2, the polyglot component can receive a query written in a common language and 
execute this in the various target datastores. As a result, the retrieval of the static data becomes 
more transparent, as this is being delegated to another component, letting the streaming engine to 
only correlate the streaming data with the result. 
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5. INFINITECH streaming engine overview and design of operators  
After performing an intensive state-of-the-art analysis of existing solutions regarding frameworks for 
streaming processing, which can be found in Section 3, we decided to use the Apache Flink as the 
basis for the INFINITECH unified query processing framework, as the latter offers a variety of 
characteristics and functionalities that can be useful for the platform. It provides two different APIs 
for correlating streaming data with data at-rest which transforms streams and external persistent 
data into tabular formats that can be used by the various data operators. The provided Table API and 
SQL API can be used for static data and can be used in conjunction with the DataStream and DataSet 
interfaces. 

 

Apache Flink provides two manners for processing: a language-integrated query API and the ability 
to direct execute SQL statements. The former provides a set of available methods that can be 
invoked and can compose a pipeline of relational operations in an intuitive way and returns an 
equivalent result compared to a normal SQL execution. It supports common SQL operators such as 
selections, projections, filters, aggregations etc. The latter manner requires the compilation of the 
SQL statement to an execution plan that will be applied. The compilation makes use of Apache 
Calcite [21] .  

 

There is one significant difference however between those two ways for accessing static data: Using 
SQL operators, the whole dataset needs to be available to the streaming engine, where the latter 
applies the query plan in memory and returning back the results. The only exception is for SQL-
compatible data management systems, where the whole query can be pushed down to the source 
via a Java DataBase Connection (JDBC) connection. In fact, in that cases, it is the database itself that 
takes care about the execution of the statement and returns back the result set, which will be 
further transformed to a tabular format, thus initializing a Table instance of the corresponding API. 
In all other cases, the dataset has to be fetched first from the source, and the execution plan needs 
to be handled by Flink in memory. An alternative approach is the implementation of specific 
connectors that can be used by the streaming engine using the language-integrated query API. As 
mentioned before, the query API provides various relational operations such as selections, projects 
etc, and the connector implements those operators for data access. As a result, the dataset does not 
have to be loaded in memory. Instead, those operations are being executed in the target datastore 
which filters out records and returns the results.  

 

INFINITECH data management layer is SQL-compatible and implements the JDBC specification. 
However, this requires the invocation of the query engine that introduces an inherit overhead due to 
its footprint. Due to this, we plan to provide an INFINITECH Flink connector, which will implement all 
operations supported by Flink for unified stream and batch processing. The benefit is twofold: firstly, 
it will allow for direct access to the storage engine of the platform, bypassing the footprint 
introduced by the query engine, and as a result, can support data ingestion in even higher rates. 
What is more, the direct API of the data storage of INFINITECH has been designed to support the 
distributed execution of aggregated operations. As a result, these types of operations can be pushed 
down to the storage for efficient data retrieval. The following sections provide information about the 
initial design of integration of the streaming engine of Flink with the INFINITECH data management 
layer via those operators. 
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5.1 Basic Concepts 

 

The Table API has as its central concept the Table which serves as the input and output of 
operations: an operator that performs a project will take as input an instance of a Table and will 
return the projected result in another instance of a Table. Tables can be either permanent or 
temporary. The former allows to be visible across several sessions that might be span across 
different nodes, while the latter is only visible during the lifecycle of a single session. 

 

In order to create a table, there are two different ways: one is to use the native API that allows you 
to use the language-integrated query, which composes the operators by using native language, or by 
using an SQL statement and pass the query string to the framework. The following code snippet 
shows how to construct a table with the native API. 

 

// create a Table  
tableEnv.connect(...).createTemporaryTab le("Orders");  
 
// scan registered Orders table  
Table orders = tableEnv.from("Orders");  
 
// compute revenue for all customers from France  
Table revenue = orders  
  .filter($("cCountry").isEqual("FRANCE"))  
  .groupBy($("cID"), $("cName")  
  .select($("cID"), $("cName"), $("revenue").sum().as("revSum"));  

 

While this code snippet produces an equivalent result, using an SQL statement: 

 

// create a Table  
tableEnv.connect(...).createTemporaryTable("Orders");  
 
// scan registered Orders table  
Tabl e orders = tableEnv.from("Orders");  
 
// compute revenue for all customers from France  
Table revenue = tableEnv.sqlQuery(  
    "SELECT cID, cName, SUM(revenue) AS revSum " +  
    "FROM Orders " +  
    "WHERE cCountry = 'FRANCE' " +  
    "GROUP BY cID, cName"  
  );  

 

The difference between these two code snippets is the way they retrieve data from the underlying 
datastore. In the second example, there is an SQL string that will get all orders from the country 
whose name is FRANCE, and will return the overall revenue of all customers living in that country. To 
do so, it will need to use the FROM clause in order to do a selection over the ORDERS datatable, then 
apply a filter condition via the WHERE clause and the GROUP BY clause to group the summary of the 
values over those columns. Finally, it will project the two columns in the GROUP BY and will apply 
the aggregation operator over the revenue column. This query can be pushed down via the JDBC in 
cases Flink is integrated with an SQL compatible data source. Otherwise, it will grab all data from the 
table ORDERS first, and then it will apply this query over the dataset that has been fetched in 
memory.  
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In the other code snippet however, the same query is expressed via the native API. We can see the 
involved operators are being constructed step-by-step. Given that, a filter will be applied on the 
specific column over the table that have been defined, which will get data from the table ORDERS. 
Then, the group by method will be invoked whose result will be projected by the select method, 
which also applies the aggregation operation. 

 

Apart from reading data, the API provides the ability to manipulate and persist data to a persistent 
storage. The following code snippet provides an example. 

 
// create an output Table  
final Schema schema = new Schema()  
    .field("a", DataTypes.INT())  
    .field("b", DataTypes.STRING())  
    .field("c", DataTypes.BIGINT());  
 
tableEnv.connect(new FileSystem().path("/path/to/file"))  
    .withFormat(new Csv().fieldDelimiter('|').deriveSchema())  
    .withSchema(schema)  
    .createTemporaryTable("CsvSinkTable");  
 
// do something and get the result  
Table result = ...  
 
// emit the result Table to the registered TableSink  
result.executeInsert("CsvSinkTable")  

 

This code creates a temporary table called CsvSinkTable that is mapped to a csv file in the storage 
and has the schema that has been defined at the first lines of the code. After doing a process, the 
data analyst retrieves the data and puts them into an instance of the Table, and then invokes the 
executeInsert method to actually store data into the csv file. 

 

 

5.2 Stream Correlation with Data At-Rest 

Apache Flink provides two APIs that allows the manipulation of streaming data, which are the 
DataStream and DataSet APIs. Table API and SQL queries can be easily integrated with and 
embedded into DataStream and DataSet programs. As a result, the data analyst can write a query to 
retrieve data from an external data table that is stored in a relational database management system 
and do a pre-processing: apply some filters, aggregate data that are grouped by a number of 
columns and project specific columns to the temporary table. The data stored in the table can be 
further processed with either the two of the DataStream or DataSet APIs. The same can happen vice 
versa: it is possible for a DataStream or DataSet program to be used as an operand in an operator 
that is part of the Table API.  

 

Being able to transform those two APIs gives the ability for the streaming engine to correlate data of 
those two different types: streaming data with data at-rest. As data stored in the table can be 
further processed by the streaming APIs, it allows data coming from a stream to make use of static 
information that can be retrieved by query statements over a persistent data source. Having said 
that, we can retrieve the average value of the finance transactions of a user during the past week, by 
executing an analytical query to the target database, and retrieve this result via a Table. This value 
can be later on used by the streaming APIs to check if the value of a current finance transaction is 
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bigger than the amount of money that this costumer is usually performing, that might trigger an 
alert. 

 

In the same sense, an operator of the Table interface might be able to insert data to a persistent 
storage. The ability of the Table to consume data of the streaming APIs allows for the direct 
ingestion of data streams into the storage layer. As it has been already mentioned, the insert 
operation usually puts data into a data queue, and a consumer process periodically sends micro 
batches to the target datastore. In INFINITECH, we have designed our insert operator to directly 
ingest data to the storage engine of the platform, taken advantage of its ultra-scalable transactional 
manager that allows to server operational workloads in very high rates. 

 

Moreover, in order to correlate stream and batch data, it is not enough to simple be able to 
transform the different types of APIs to another, but also providing a framework and operators that 
can be applicable to both types of data. Their main differences are that batch data are bound, while 
streaming is usually unbound, batch data pre-exist while streaming data continuously fills the query 
and batch data produces static results, while streaming data continuously change the result as the 
stream goes through the operator. In order to overcome those differences, there has been 
introduced the concept of virtual views. All input of the operators implements such a virtual view so 
that the execution of the operator can be transparent from the implementation of the view. More 
precisely, in order to deal with streaming data, there has been proposed the Materialized view or 
Dynamic Table. The latter caches the result of the query such that the query does not need to be 
evaluated each time the view is being accessed. However, the data in the view can be outdated 
when a data modification operator arrives into the stream. In order to overcome this, different 
techniques can be applied that updates the materialized view, by listening to changes by data 
modification operators of the stream. Dynamic tables are changing over time in contrast to the static 
tables that represent batch data. Due to this, queries targeting streaming data are often called 
Continuous Queries, which never terminate and produce those dynamic tables as the result. This 
means that those queries continuously update their result in order to reflect the changes on its 
dynamic input tables. 

 

Taking into account that the maintenance of the updates coming from the stream in the dynamic 
table must be done in memory, this concept comes with several restrictions, mainly regarding 
computational and memory usage. Continuous queries are evaluated on unbounded streams and 
are often supposed to run for weeks or months. As a result, the total amount of data that a 
continuous query processes can be very large. Similarly, other queries require re-computing and 
updating a large fraction of the emitted result rows even if only a single input record is added or 
updated.  

 

Dynamic tables are the core concept of Flink’s Table API and SQL support for streaming data. In 
contrast to the static tables that represent batch data, dynamic tables are changing over time. They 
can be queried like static batch tables. Querying dynamic tables yields a Continuous Query. A 
continuous query never terminates and produces a dynamic table as result. The query continuously 
updates its (dynamic) result table to reflect the changes on its (dynamic) input tables. Essentially, a 
continuous query on a dynamic table is very similar to a query that defines a materialized view. 

 

 

 

 


















