
HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s horizon 2020 research and innovation

programme under grant agreement no 856632

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D3.6 – Data Streaming and Data at Rest
Queries Integration - I

Lead Beneficiary LXS / LeanXcale

Due Date 2020-08-31

Delivered Date 2020-10-01

Revision Number 3.0

Dissemination Level Public (PU)

Type Report (R)

Document Status Release

Review Status Internally Reviewed and Quality Assurance Reviewed

Document Acceptance WP Leader Accepted and/or Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Ref. Ares(2020)5168839 - 01/10/2020

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 31

Contributing Partners

Partner Acronym Role1 Name Surname2

LXS Lead Beneficiary Ricardo Jiménez-Peris

LXS Contributor Boyan Kolev,

Javier López Moratalla,

Patricio Martinez,

Sandra Ebro,

Alejandro Ramiro

GLA Contributor Richard McCreadie,

Craig Macdonald,

Iadh Ounis

UBI Contributor Konstantinos Perakis,

Dimitris Miltiadou

UPRC Contributor Vasilis Koukos

Ioannis Kranas

JSI Internal Reviewer Maja Skrjanc

IBM Internal Reviewer Fabiana Fournier

INNOV Quality Assurance Dimitris Drakoulis

Revision History

Version Date Partner(s) Description

0.1 2020-09-01 LXS ToC Version

0.2 2020-09-01 LXS Input on executive summary and introduction

0.3 2020-09-18 UPRC Input on SotA Analysis on Data Streaming
Technologies and Complex Event Processing
(Section 2)

0.4 2020-09-22 LXS Input on Section 3

0.5 2020-09-23 LXS, UBI Input on Section 4

0.6 2020-09-23 GLA Input on Section 5

0.7 2020-09-24 LXS Input on conclusions

1.0 2020-09-24 LXS Finalizes the document to be sent for internal
review

1.1 2020-09-25 IBM Internal review

1.2 2020-09-29 JSI Internal review

2.0 2020-09-30 LXS Submitted for QA

3.0 2020-10-01 INNOV, LXS QA and finalized for submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance
2 Can be left void

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 31

Executive Summary
The goal of task T3.3 “Integrated Querying of Streaming Data and Data at Rest” is to implement a
data framework that can provide a unified manner for accessing data that can be considered both
streaming and data-at-rest at the same time, while being able to correlate data coming from those
different types of data sources. This data framework aims to overcome the existing obstacles that
are observed in current solutions. Even if currently available solutions state that they enable the
provision of real-time business intelligence (BI), they often provide something near real-time due to
the inherit limitations of the tools they rely on. The important challenge that INFINITECH unified
query framework aims to solve is to provide actual real-time BI that is crucial in a variety of use cases
that the INFINITECH platform supports, such us real-time risk assessment, transaction fraud
detection, money laundry, etc.

The INFINITECH unified query processing framework will rely on one of the popular streaming
processing tools, extending it with SQL operators that will enable the correlation of streaming data
with data at-rest, removing the barriers for real-time processing. This will be achieved by reading
data from the platform’s data management layer and performing cost-demanding analytical
operations in cost effective manner that can be used as a streaming operator, or by allowing the
data ingestion of streaming data to the persistent storage, modifying its content while at the same
time, ensuring transactional semantics. Towards this direction, this task will exploit the outcomes of
other tasks related with the data management layer of INFINITECH, and more precisely, the ultra-
scalable transactional management and the Hybrid Transactional and Analytical Processing (HTAP)
provision, the declarative online data aggregations, and potentially the polyglot extensions of the
platform. The outcome of those tasks will constitute the basic pillars that will be utilized by the
operators implemented in the scope of this task, which will allow the unified query processing
framework to provide real-time BI.

This deliverable describes the initials steps required for the INFINITECH unified query processing
framework design and implementation. At this phase of the project, an initial analysis of the state-
of-the-art in the field of data streaming processing has been conducted in order to decide which of
the proposed solutions would be better suited to be used as the core of the framework. Based on
this decision, an initial design of the operators that will extend the proposed data streaming
processing has been made, that will drive the actual implementation during the second phase of the
project. This was necessary as those operators rely on the outcome provided by other technical tasks
of WP3 and WP5, leading the implementation to be initiated at the second phase of the project
(M12-M20). As a result, two more versions of this deliverable will be released at M20 and M27 that
will report the additional work that will be carried out in the corresponding phases.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 31

Table of Contents

Contributing Partners .. 2

Revision History ... 2

Executive Summary ... 3

Table of Contents .. 4

List of Figures .. 5

List of Tables ... 5

Abbreviations .. 5

1. Introduction .. 6

1.1. Objective of the Deliverable ... 8

1.2. Insights from other Tasks and Deliverables ... 8

1.3. Structure .. 8

2. Relation with INFINITECH use case scenarios ... 9

2.1 Problem Dimensions .. 9

2.2 The Case of Real time Risk Assessment in Investment Banking ... 10

3. State-of-the-Art Analysis on Data Streaming Technologies and Complex Event Processing 13

3.1 Data Streaming Technologies and their Generations .. 13

3.1.1 Apache Storm ... 14

3.1.2 Apache Spark .. 14

3.1.3 Apache Flink .. 15

3.1.4 Amazon Kinesis ... 15

3.1.5 Apache Samza ... 15

3.1.6 IBM InfoSphere Streams.. 15

3.1.7 Brief Comparison of Analysed Data Streaming Tools ... 16

4. INFINITECH Enablers for SQL Operators over Streaming Data... 17

4.1 Hybrid Transactional and Analytical Processing .. 18

4.2 Online Aggregations ... 18

4.3 Polyglot Capabilities ... 19

5. INFINITECH streaming engine overview and design of operators .. 20

5.1 Basic Concepts ... 21

5.2 Stream Correlation with Data At-Rest .. 22

5.3 INFINITECH Operators for the Streaming Engine .. 24

6. Conclusions and next steps .. 29

7. References ... 31

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 31

List of Figures
Figure 1: Example of VaR calculation process for FX data streams .. 11

List of Tables

Table 2: Problem Dimensions .. 10

Table 1: Comparison of Data Streaming Tools .. 16

Abbreviations

API Application Programming Interface

AWS Amazon Web Services

BI Business Intelligence

CEP Complex Event Processing

CPU Central Processing Unit

DL Deal Learning

ETL Extract, Transform, Load

HTAP Hybrid Transactional and Analytical Processing

I/O Input/Output

IoT Internet of Things

JDBC Java DataBase Connection

ML Machine Learning

NoSQL No/Not only SQL

SDG Stateful DataFlow Graph

SQL Structured Query Language

VaR Value at Risk

WP Work Package

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 31

1. Introduction
Finance and insurance institutions utilize static data that are persistently stored in a database
management system, often called as data-at-rest, in order to extract information via analytical tools
and AI algorithms that rely on historical data. Therefore, their analysis is executed as a batch
process, once the tool or algorithm is being invoked, relying on the data that are persistently stored
in the datastore at that exact point in time, which does not always reflects the situation at the same
point in time. In addition, as explained in D3.1, organizations that utilize Big Data tend to use Extract,
Transform, Load (ETLs) periodically in order to move data from their operational datastores to a
data warehouse, where they perform their analytics. As a result, the latter make use of a snapshot of
the dataset that was taken at the specific point in time when the ETL process moves the data to the
warehouse. This can pose an issue in cases where an enterprise needs to be aware of potential risks
or opportunities in order to adapt and exploit them at the time when they happen. In finance and
insurance sectors there are many cases where the time window to perform an action is narrow and
performing analysis on yesterday’s data can hinder effective courses of action. Such examples in the
finance sector include risk assessment analysis, where a financial organization might need to provide
detailed risk information regarding the management of an asset in real-time, otherwise an
investment opportunity could be lost. Another example can be noticed in fraud detection
mechanisms, where the identification of a fraud transaction must be done exactly the moment when
the transaction takes place, since analyzing the historical transactions of the previous day could
prove ineffective. Moreover, in the scope of the insurance sector, taking IoT sensor data coming
from devices, either from vehicles or from people’s smart phones could prove crucial to occur in real
time since utilizing historical data could result in losing the opportunity to extract vital information at
the time that the data are produced. Those scenarios are observed often in financial institutions and
the insurance sector and pose typical challenges to many of the organizations of these sectors. They
are also listed as typical user requirements from the pilots of the INFINITECH project, as they have
been addressed in the corresponding deliverables of T2.1.

Due to the need of real-time data analytics, streaming processing systems have been widely used
during recent years. The emergence of IoT, where data are being continuously produced by various
sources (either a hardware sensor that is physically installed or data generated after an online
transaction) has led organizations having different types of streams being accessed by their systems.
In order to utilize this new types of data, various data streaming infrastructures have been
developed that allow application developers and data analysts to perform some query processing on
top of the stream. In contrast with traditional database management systems where data are
persistently stored and considered at-rest, where queries are submitted dynamically and produce
results in a request-response manner, the nature of the streaming processing is different. Queries
are statically submitted and make use of dynamic data (coming from the stream) often called data
in-flight, and thus, they are considered continuous. As queries are not dynamic, there is no request-
response type of interaction, rather than once a continuous query has been submitted, it
continuously generates results. Queries might be stateless where no previous information might be
needed. Examples can be found in scenarios where a financial organization needs to check if the
amount of an online transaction exceeds a specific threshold. In case it does, this event might trigger
additional actions from the organization to examine the transaction details and potential fraud
activities. Typically, those queries only require comparison of the current data coming from the
stream with a static value. However, as data is being processed in real-time, it allows the financial
institution to react instantly, without having to perform this type of analysis on obsolete data
coming from a snapshot taken in the past. Additionally, continuous queries might be stateful and
require some timestamp information that has been collected from data being passed through the
stream channel previously. Usually, a time window is being maintained that allows for aggregated
operations to take place. An example will be to produce an alert if the value of a data element

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 31

coming through the stream is bigger than the average value of all data elements that have been
passed during the last minute, hour, etc. This reveals potential current trends and might be useful in
scenarios, for example, where a lot of investors choose to buy a specific stock or other investment
product, or if clients decide to massively withdraw money from their accounts, or move their money
to other products, which might be the case of a bank run due to a potential currency devaluation as
the global economic crisis that started in 2008 showed. The streaming processing framework
calculates the aggregated values of money transfer in the last minute or hour and might generate an
alert to the financial institution in case massive money transfer occurs. It is obvious that if the
financial institution had to rely on a periodic batch processes using other types of analytical tools on
an obsolete dataset, the results might be catastrophic for the institution which could face hazardous
liquidity issues.

It has been highlighted how those two different types of processing, data at-rest and streaming data,
can solve different types of problems addressed by the finance and insurance sector. Dynamically
submitted queries at data at-rest can feed machine learning (ML)/Deal learning (DL) algorithms
taking into account all historical data stored in a persistent medium like a data warehouse, but
cannot record changes or trends happening in real-time. On the other hand, static continuous
queries can generate events to which an organization can respond immediately. However, they can
only rely on a narrow time window and cannot take into account the existence historical data. One
of the current challenges arising during recent years is the ability for query processing that involves
both worlds: data at-rest and streaming data. This can enable real-time business intelligence (BI)
where i) streaming processing can be combined with the results of an analytical processing or ii)
streaming data can be directly ingested in a data warehouse, and the AI algorithms can rely on fresh
data. However, both approaches come with their limitations and can only provide near real-time BI
due to various inherit obstacles. In order to collate streaming processing with aggregate/analytical
queries targeting data stored in a database, it requires the latter to be executed first, get the result,
and compare the result with the streaming data element on the fly. However, aggregate and
analytical queries on a dataset need a scan operation, meaning that the majority of a dataset must
be accessed first. Typically, these types of queries are costly, and therefore, cannot be used in
streaming processing, where the latency must be very low. To overcome this inherit obstacle,
traditional approaches often cache those results in memory and periodically update their values.
This breaks however the data consistency, which is of major importance in the financial sector, as
data is outdated. Ingesting data from a stream to a persistent storage and performing analytical
queries in the datastore itself, comes with other obstacles. Traditional database systems cannot
handle such an increased operational workload coming from a data stream, as they cannot scale out
effectively. Due to this, system architectures either rely on NoSQL database systems, losing however
transactional semantics and data consistency, or tend to add data coming from a stream to a data
queue, and then periodically perform batch ingestion on the database. The latter approach leads to
the use of near real-time BI, while the pilot use cases of INFINITECH aim to go a step beyond and do
analytics on data, as they arrive.

The task T3.3 “Integrated Querying of Streaming Data and Data at Rest” aims to solve the mentioned
problems: providing a unified framework that allows application developers and data analysts to
perform analytics taking into account data elements coming from both worlds. This means
correlating streaming tuples with data at-rest in both ways: reading from a persistent storage and
correlating the results with data coming from a streaming channel and using data streams to update
and modify the contents of a persistent datastore.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 31

1.1. Objective of the Deliverable

The objective of this deliverable is to report the work that has been done in the context of the task
T3.3 at this phase of the project (M11). This task lasts until M27, and therefore, two more versions
will be released, extending and modifying when necessary the content of this document, following
the agile approach for system development and aiming to update the solution and implementation
with the current trends of the environment as the project progresses. The work that has been done
during this phase (M03-M11) was mainly focused on the experimentation of various streaming
processing frameworks that are currently being used in the industry, in order to decide which of
those engines the INFINITECH unified query processing framework will rely on. Based on this
preliminary work that was essential for this task, the initial design of the data operators that will
allow the correlation of data elements from both worlds took place. The correlations themselves are
relying on the outcomes of the various tasks that are related with the data management layer, as
their implementations provide the basis for the implementation of the task T3.3 to happen.
According to the designated plan, the actual implementation will take place the forthcoming period,
and this deliverable reflects the initial design at this phase of the project.

1.2. Insights from other Tasks and Deliverables

As the majority of the deliverables of WP3, the work that is reported in this document is based on
the overview description of the corresponding task T3.3, which has been further specified in more
detail at WP2, which is the fundamental work package that defines the overall requirements of the
whole platform. T2.1 defines the user stories of the pilots that drive the necessity of this task, while
T2.3 defines the specification of the overall technologies that INFINITECH provides and need to
interact with the unified query processing framework. T2.5 describes the available datasets that
need to be tackled by this component while T2.7 puts the component under the general context of
the INFINITECH Reference Architecture. Regarding the technical tasks of the project, T3.3 is relying
on scalable transactional processing of the INFINITECH data management layer, as described in the
corresponding deliverables of T3.1, along with the Hybrid Transactional and Analytical Processing
(HTAP) capabilities that this task provides. Moreover, as explained in the corresponding deliverables
of T3.2, the polyglot processing is an extension of the data management layer, and therefore, this
task can exploit its outcomes in order to correlate streaming data with data stored in external data
sources. In addition, T3.3 will also exploit the outcomes of T5.3 and its declarative live aggregation
mechanisms that will allow the execution of cost-demanding aggregation operations with O(1)
complexity, and hence, making it possible to correlate streaming data with this type of information.
Finally, T3.3 will provide valuable input to T3.4, whose scope is to provide automated parallelization
of data streams that will rely on the operators implemented in this task.

1.3. Structure

This document is structured as follows: Section 1 introduces the document and section 3 provides
concrete examples on how the outcomes of T3.3 can be utilized by the pilots of the INFINITECH
project. Then section 3 provides the state-of-the-art analysis of existing solutions for complex event
processing and data streaming frameworks, highlighting the existing barriers of those solutions to
provide real time business intelligence. Section 4 analyses how the technological achievements of
INFINITECH can be used as enablers to overcome those barriers. Based on the output reported in
sections 3 and 4, section 5 describes the design of the SQL operators that will be implemented in
order to extend the streaming processing framework to correlate streaming data with data at-rest.
Finally, section 6 concludes the document and addresses next steps.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 31

2. Relation with INFINITECH use case scenarios

In the fast-moving financial domain, it is critical to maintain up-to-date analytics over financial
markets. Such analytics are used by a wide range of both human and AI traders continuously
throughout each day. However, in practice, these analytics are not as simple as tracking a stock or
share price. Instead, more complex metrics are needed that compare real-time market changes with
long-term historical trends, whilst also incorporating the current position/exposure of the individual
trader. For example, a common metric used by financial traders around the world is Value at Risk,
which measures the potential risk of the trader’s current investments by analysing the variance of
the associated assets over different time horizons (that can involve years’ worth of data points).

Metrics like Value at Risk raise a number of computational challenges, as they require both real time
market data streams (data-in-flight) to remain current, but also need large quantities of historical
data (data-at-rest) to provide meaning in context. Decades of research into stable database solutions
have produced a range of good quality products to manage data-at-rest, including MongoDB,
MySQL, PostgresSQL, LeanXcale, among others. Meanwhile, although less mature, a number of
streaming platforms for processing data-in-flight have been under development over the last 10
years, such as Apache Storm or Apache Flink. However, the architectures of such databases and
streaming platforms are very different and are not designed to be compatible. Hence, developing
applications that require seamless integration of both databases and streaming platforms is very
difficult and requires significant specialized expertise.

Task 3.3 in general aims to make such integration easier for the applications within the financial
domain, by producing a framework for orchestrating the aggregation of data-in-flight (streaming
data) and data-at-rest (i.e. historical data within an SQL database).

2.1 Problem Dimensions

It is first worth noting that there is a large space of possible ways that an application developer
might want to aggregate data-in-flight with data-at-rest. For example, a streaming select involves
taking each item that arrives on an input stream and performing a SQL SELECT operation for that
item, before sending both the item and the query return on an output stream. Meanwhile, a
windowed timeseries function involves periodically performing a local analytics function on a small
streaming data window, writing the result to a database, and then retrieving the window timeseries
for a longer time period to calculate an aggregate measure. Furthermore, the appropriate solution
will also be based on a range of environmental factors, such as whether it is possible/desirable to
continuously store the incoming data streams, the available compute capacity that can be allocated
to each individual stream, along with expected storage and network latencies. Hence, to better
organize T3.3, we structure the problem along the following dimensions:

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 31

Table 1: Problem Dimensions

Dimension Value Description

Processing Type Per-Item The user is looking to augment an item that has
arrived on a stream with associated data in a
database

Windowed The user is looking to perform calculations over
a series of time windows, where a subset of
those windows is stored in a database

Outcome Writing True Once the calculation is finished, the outcome
needs to be stored in a database

False The calculation is read-only on the database

Stream Writing True The raw contents of the data stream will be
stored in a database

False The stream contents are not stored

Computation Locality Streaming Platform All significant computation is performed within
the streaming platform (the database is used
only for basic data lookup)

Streaming Platform
& Database

Computation is shared between the streaming
platform and database

Importantly, developing a technology that is able to solve all dimension combinations is out of the
scope of T3.3. Instead, we focus on a sub-set of dimension combinations that align with the
INFINITECH pilots that require such a technology, which we discuss in the next section.

2.2 The Case of Real time Risk Assessment in Investment Banking

The high-level aim of this case is to provide bank traders real-time information about financial assets
they may wish to trade, ultimately enabling improved decision making and hence profit margins for
their customers. Currently, trading information and future predictions are updated infrequently
(once a day), meaning that traders are unable to exploit rapidly changing market conditions. this
case should solve this issue by providing a solution that can aggregate market data, trends and
provide predicted risk/yield estimates that update in real-time.

Within the wider trading platform that this case supports, one component that requires data-in-
flight and data-at-rest to function is asset risk estimation. The goal of this component is to monitor
the stream of financial asset costs and the current exposure of the trader to those assets (i.e. how
much the trader has invested), and then calculates a range of risk metrics. This is used to help
traders track the short and long-term risks of particular investments or their broader portfolio.

To illustrate, we will use the example of one very common metric, Value at Risk (VaR). The aim of
VaR is to determine the potential loss for an asset and the probability that the loss will occur. The
primary input to VaR is the return on an asset (how profitable it is) over time. This is expressed by a
very large numerical timeseries spanning millions of data points per year for each asset. This is
combined with various parameters, such as the target time period to calculate VaR over, as well as
the current exposure of the trader. The calculation of VaR (and similar metrics) is costly, particularly
when calculating for long time periods with high datapoint counts, or if performing a significant
forward projection. Moreover, if the underlying return for an asset changes rapidly, then the trader
will want to be notified of the increased VaR (i.e. estimated risk) with very little latency, such that

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 31

they can take remedial steps. However, constantly re-calculating VaR from first principles for
potentially hundreds of thousands of assets is not feasible.

On the other hand, it is possible to substantially reduce the cost of the VaR calculation through
incremental calculation of its constituent components (the mean and standard deviation of the asset
return timeseries) across smaller time windows. This can be achieved using a streaming platform
that buffers datapoints into fixed time windows and triggers processing once each window is full.
However, a streaming platform itself cannot safely store the resultant intermediate outcomes as
they are designed to be stateless. Hence, the intermediate outcome from each window needs to be
stored into a database and made accessible such that VaR can be rapidly calculated for a target time
period. The challenge then from the database side is to provide sufficiently fast writes for the new
windows as they are created, while also enabling very low-latency querying of the stored window
data for each asset such that VaR can be re-calculated for tens of thousands of assets minute-by-
minute.

Error! Reference source not found. illustrates the structure of this process for FX assets (currency
trading) when combining data-in-flight and data-at-rest. As we can see, a high-volume data stream
of currency prices continually arrives at the left hand side, comprised of <asset, timestamp, value>
tuples. This stream is then sub-divided into one stream per-asset. The streaming platform will then
buffer the updates for each currency price into fixed time windows (in this example a 5 minute
window length). Once the buffer period has elapsed, a trigger starts the calculation of the
intermediate components needed for VaR, i.e. the mean and standard deviation of the updates
within the window, that are then stored within a database. Depending on the desired variants of
VaR the user wants, the required window data is loaded from the database and those variants of
VaR are calculated and then emitted for downstream consumption by the user.

Figure 1: Example of VaR calculation process for FX data streams

Considering the dimensions discussed earlier, this is a windowed process, i.e. it relies on
intermediate calculation over time windows, and the computation is primarily performed within the
Streaming Platform. Meanwhile, calculation outcomes are being written (means and standard
deviations), but the raw stream is not.

This is a proposed solution for a general case application coming from the insurance sector targeting
risk assessment analysis on real-time. However, we designed in a more generic manner in order to
apply the same patterns to other scenarios coming from both the insurance and finance sector.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 31

INFINITECH has 15 pilot cases, where many of them require streaming processing technologies, as
identified in the user stories provided by T2.1 Therefore, we will take advantage of those pilots
during the evaluation phase to verify if the proposed framework that we present in this deliverable
can be beneficial to them.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 31

3. State-of-the-Art Analysis on Data Streaming Technologies and
Complex Event Processing

Big data analytics is a key area for businesses and the public sector alike, enabling the analysis of
huge amounts of data to draw business insights and discover new, innovative ideas, technologies
and solutions. By utilizing big data analytics and artificial intelligence, businesses and organizations
can support their BI, adopting new data driven decision-making tools and shifting strategic planning
processes.

The data collected by the various systems day by day are rapidly increasing and that makes it
difficult to store them in known relational and non-relational business’ databases but also, to apply
data mining tools and techniques directly on big data streams. Thus, nowadays it seems that
streaming data processing, the technology that started to develop more than 20 years ago, has a
greater value than ever. In 1992, the Tapestry system has introduced the notion of streaming
queries, and by then, various technologies of streaming processing have been developed per
generation of streaming systems.

3.1 Data Streaming Technologies and their Generations

Starting with the first generation, the applications that have been developed in the early 00s used
centralized stream processing engines such as Stream [1], Aurora [2] and TelegraphCQ [3]. These
engines provided window-based query operators that execute continuous queries over relational
data streams. While these engines supported principled relational query models, e.g. as proposed
through the Continuous Query Language (CQL) [4], they lacked support for parallel data processing,
making them inapplicable in Big Data scenarios.

With the increase of stream rates and query complexity, a second generation of stream processing
engines became distributed in order to harness the processing power of a cluster of stream
processors. Systems such as Borealis [5], Gigascope [6], and InfoSphere Streams [7] permit inter-
operator parallelism for continuous queries, that is, one query can be executed on multiple
machines. Such systems exploit task-parallelism, i.e. they execute different operators on different
machines and allow the execution of many different continuous queries in parallel. InfoSphere
Streams supports intra-query parallelism through a fine-grained subscription model, which specifies
stream connections, but management is manual.

As a result, the third generation of stream processing engines focus on intra-query parallelism,
parallelizing the execution of individual query operations. StreamCloud [8], Apache S4 [9] and Storm
[10] express queries as directed acyclic graphs with parallel operators interconnected by data
streams. StreamCloud parallelizes stateful queries at runtime also providing intra-operator
parallelism. It uses a query compiler to synthesize high-level queries into a graph of relational
algebra operators. StreamCloud also provides elasticity. It uses hash-based parallelization, which is
geared towards the semantics of joins and aggregates. S4 schedules parallel instances of operators
but does not manage their parallelism. Storm allows users to specify a parallelization level and
supports stream partitioning based on key intervals, but it cannot scale out the computation at
runtime. This makes it hard to support unknown Big Data analytics tasks when the computational
expensive of operators is not known beforehand. Schneider et al. [11] adds elastic operators to the
SPADE language, which gradually finds the optimal number of threads for stateless processing with
maximum throughput. Spark Streaming [12] parallelizes streaming queries by running them on the
Spark distributed dataflow framework using micro-batching. With micro-batching, the streaming

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 31

computation is executed as a series of short-running Spark jobs. Each Spark job outputs incremental
results based on the most recent input data. A limitation of such an execution model is that it makes
it challenging to support arbitrary window semantics for continuous queries and in particular sliding
windows. The Stratosphere project [13] has developed a distributed dataflow framework that can
execute data-parallel batch and streaming processing jobs on the same platform. Computation is
described as dataflow graphs, which are optimized using existing database techniques. The results of
the Stratosphere project were made available through the open-source Apache Flink [14] platform
now exploited by the German startup Data Artisans and the only competitor to Apache Spark made
by the American startup DataBricks. All the above platforms assume that stream processing
operators are stateless, which simplifies scalability and failure recovery. However, this means that
streaming queries cannot express complex analytic tasks such as data mining and machine learning
algorithms that incrementally refine a model.

To address this problem, the fourth generation of stream processing engines adopt a stateful stream
processing model. Platforms such as Apache Samza [15] and Naiad [16] execute streaming operators
in a data-parallel fashion while allowing operators to have access to mutable in memory state. For
example, the state of a continuous query can be a machine learning model that is trained with new
incoming data. These stateful stream processing platforms therefore support the execution of
analytical applications that maintain historic data while continuously processing new data. Some of
these fourth-generation streaming engines rely on the concept of Stateful Dataflow Graphs (SDGs)
[17]. An SDG contains vertices that are data-parallel stream processing operators with arbitrary
amounts of mutable in-memory state, and edges that represent the stream. SDGs can be executed in
a pipelined fashion so to have a low processing latency. All operators are assigned to machines in the
cluster and the parallelization level for each operator is automatically decided by the system.

Today, some of the top tools often used for real-time data streaming processing are Apache Storm,
Apache Spark, Apache Flink, Amazon Kinesis [18], Apache Samza and IBM InfoSphere Streams. Below
is an extended analysis of these tools.

3.1.1 Apache Storm

Built by Twitter, Apache Storm [10] specifically aims at the transformation of data streams and it is
useful for ETL, online machine learning, continuous computation, and many other things. The
foremost capability of Apache Storm is faster data processing that can carry out processes at the
nodes with faster data processing than other tools do, combined with very low latency. However,
Apache Storm is known to have a few drawbacks such as that it is only suited for data which are
ingested as one entity and it cannot guarantee that the data will be processed only once, and thus
may compromise reliability..

3.1.2 Apache Spark

Spark [12] is an general-purpose distributed cluster computing framework. It is known for its in-
memory processing capabilities where its engine conducts analytics, ETL, machine learning, and
graph processing on data in motion or at rest. It is not actually a real-time system, but it processes in
the micro-batches at a defined interval. It offers high-level APIs for different programming languages
and when it has some latency, which eliminates some real-time analytics use cases, it makes sure
that the data is processed in a trustworthy manner.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 31

4. INFINITECH Enablers for SQL Operators over Streaming Data
As it has been in the previous section, modern streaming processing frameworks nowadays provide
the ability to correlate data at-rest with data coming from a streaming channel. They offer a variety
of operators that enables a data analyst to apply processing methods on the stream, using either
CEP built-in functions or high level data frames. In the latter case, streams are transformed into
unbound virtual tables that can be consumed by SQL-alike operators, or other operators. This level
of virtualization of the data, allows for streams to be expressed as tables, and thus, being correlated
with static data that are also expressed in tabular format. The sources of the static data can vary
from static files, to database management systems and other source of persistent storage. All those
have to implement a specific connector in order for the streaming processing framework to be able
to retrieve and store data to the target source.

Although the ability for correlating static data with streaming process is not novel, there are various
barriers that prevent those frameworks to deliver real-time BI. Those limitations are usually
introduced by the persistent storage elements, which are either unable to handle data ingestion in
very high rates, or they can insufficiently execute data retrieval operations, due to the high latency
that a scan operation requires. Regarding the latter case, a typical scenario can be to compare a
streaming tuple with an aggregated value: For instance, the value of a finance transaction might
need to be checked against the overall average of finance transactions that have taken place during
the last defined period of time. However, this operation requires firstly a scan of a data partition,
which typically is costly. In order to overcome this, usually there are two approaches: The first one is
to cache this value, with the drawback that the average value is not consistent, which is not
acceptable in use cases coming from the finance sectors. The second approach is to create a virtual
table with the target dataset and apply the aggregation in memory. This has two benefits It is much
more effective, as all calculations take place in memory, which is less time consuming, and,
continuous updates and data modifications can be applied to the common shared dataset. However,
restrictions on the overall size of the memory of the dataset and insurance of the transaction
semantics are a significant drawback.

Regarding operational workloads, modified data arriving in high rates must be stored in a persistent
volume. Traditional database management systems usually are incapable to handle these loads, due
to the enforcement of transactions. As the rates goes high, the transactional management
subsystem of the database needs to scale out, in order to serve these loads. However, the
distribution of transactions is hard to be achieved, as the traditional implementations make use of
the two-phase-locking protocol, which cannot be distributed by design. To make things worse,
operational workloads cannot be combined with analytical processing, as the one blocks the other.
To overcome this problem, data ingestion is targeting operational datastores, while ETLs are used to
periodically move data to a data warehouse. By doing this, it is possible for a streaming processing
framework to ingest data to one datastore element and use the data warehouse for analytical
operations. As data in the warehouse are added periodically by the execution of the ETL, the data
can be considered as non-modified, can be cached in memory of the streaming engine. This leads to
have a near real-time BI, as the processing takes into account a snapshot of the dataset that has
been retrieved in the last invocation of the ETL. This is often not enough in modern cases coming
from the finance sector, where real-time identification of potential opportunities or mal-detections
is the requirement.

As it can be concluded, it is hard for a data analyst to make use of a streaming processing framework
in order to correlate static and streaming data for real-time analytics. Towards this direction, the
INFINITECH platform provides enablers that can be used in order to overcome those obstacles. As a

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 31

result, instead of using virtual or materialized views over a dataset that allows the execution of table
functions and SQL queries over correlated streaming data and data at-rest, while at the same time
apply possible data modifications on the view, the whole architecture can be much more simplified:
we can have the direct use of a data table of the data management layer. The latter can allow for the
streaming framework to delegate the requirements for data consistency to the database. The data
management layer offers specific enablers that aim to overcome the obstacles introduced by the
need for persistent storage.

4.1 Hybrid Transactional and Analytical Processing

Hybrid Transactional and Analytical Processing is a first-class citizen in the overall data management
layer of INFINITECH. As it has been reported in the corresponding deliverables of task T3.1, the
purpose of this enabler is twofold: Firstly, it allows for the combined execution of operational and
analytical workloads, which is crucial when there is the need for real-time business intelligence. This
removes the necessity for moving data from the transactional datastore to a data warehouse. It is
based on the removal of all data locks that are needed by traditional implementations to enforce
data consistency on transactions that are being executed in parallel. The lack of data locks allows for
an analytical operation to perform a scan over the whole dataset (which is typically the case when
we need to calculate an aggregated value) without being blocked by data modification operations
that put the locks. That way, the data analyst or application developer does not have to create and
maintain in memory specific virtual or materialized views, which are used by the streaming
frameworks to share this information across streaming sessions, and delegates this responsibility to
the lower layer that has been designed to serve this. In addition, the need to maintain the state
across sessions and share it across the different deployment nodes is removed, along with the
restriction for the size of the view due to memory limitations of the deployment.

Complementary to the above is the ability of the INFINITECH data management layer to handle very
high rates of data ingestion. Due to its highly scalable transactional management system, it can be
scaled out linearly to hundreds of nodes. As a result, it can serve hundreds of thousands of
transactions per second, without being a bottleneck. This innovation of the platform allows the
ingestion of data to be handled on the runtime, avoiding the need to push the incoming data for a
temporal persistent and fault-tolerant queue (e.g. Apache Kafka). The approach that involves a data
queue demands a consumer process that periodically gets data from the queue and puts them to
the persistent storage in a batch. As a result, data are being ingested periodically in mirco-batches,
and this design downgrades the real-time processing to near real-time.

4.2 Online Aggregations

Another obstacle that appears when correlating streaming data with data at-rest is the need to
combine the value of a tuple coming from the streaming channel with an aggregated value of the
data already stored. Requesting the min/max/average value of a dataset to be used in a later
comparison firstly requires the scan of the data table in order to retrieve the aggregated value.
Having the dataset in a persistent storage will require lots of I/O operations to that volume, which is
time consuming with a significant latency. To overcome this problem, data are being cached into
memory where this value has been pre-calculated in advance. The drawback of this technique is in
the case of datasets that are being modified frequently; we lose the data consistency, as the
aggregated value will be outdated. Materialized views are usually used to deal with this
requirement; however, each aggregated operation has to be calculated again each time the dataset
is being modified. Even if this calculation takes place in memory, introducing serious barriers

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 31

regarding the overall size of the dataset, it is computational intense. INFINITECH provides the ability
to execute online aggregations, which means the value can be retrieved online at runtime. In
contrast with the need for a scan operation and the calculation of the aggregated value by
calculating all involved records, INIFINITECH’s data management layer maintains an additional
record for each involved value. The calculation is being performed on the fly, as a new record
arrives. Instead of having to check the value of each record of the scan, the platform relies on delta
operators that have been implemented in the scope of task T5.3. As a result, the value has been pre-
calculated and the complexity for data retrieval is only O(1), which is the minimum we can get.
Furthermore, being already integrated with the transactional management component of the
platform, it is ensured that the value is consistent in terms of transactional semantics. This will
remove the necessity for the streaming processing framework to maintain such expensive in terms
of resource usage and time consuming views, and downgrades this to the lower layer. More details
regarding the implementations of the online aggregators can be found in the corresponding
deliverables of T5.3.

4.3 Polyglot Capabilities

We can consider a third obstacle, the necessity to correlate static data coming from different data
sources. Most of the streaming processing frameworks implement a variety of join operators that
can be used to get data from various sources and correlate the results between them and among
streaming channels. However, a join operator usually requires to get into memory a significant
amount of data that needs to be used for the outer operator of the operation itself. INFINITECH’s
polyglot component can be used instead, so that the data analyst and application developer can
write a simple select-from statement to get the corresponding result set. By doing this, she pushes
down to the data management layer of INFINITECH the execution of this join, removing the need
from the streaming processing to maintain all data in memory. As explained in the corresponding
deliverables of T3.2, the polyglot component can receive a query written in a common language and
execute this in the various target datastores. As a result, the retrieval of the static data becomes
more transparent, as this is being delegated to another component, letting the streaming engine to
only correlate the streaming data with the result.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 31

5. INFINITECH streaming engine overview and design of operators
After performing an intensive state-of-the-art analysis of existing solutions regarding frameworks for
streaming processing, which can be found in Section 3, we decided to use the Apache Flink as the
basis for the INFINITECH unified query processing framework, as the latter offers a variety of
characteristics and functionalities that can be useful for the platform. It provides two different APIs
for correlating streaming data with data at-rest which transforms streams and external persistent
data into tabular formats that can be used by the various data operators. The provided Table API and
SQL API can be used for static data and can be used in conjunction with the DataStream and DataSet
interfaces.

Apache Flink provides two manners for processing: a language-integrated query API and the ability
to direct execute SQL statements. The former provides a set of available methods that can be
invoked and can compose a pipeline of relational operations in an intuitive way and returns an
equivalent result compared to a normal SQL execution. It supports common SQL operators such as
selections, projections, filters, aggregations etc. The latter manner requires the compilation of the
SQL statement to an execution plan that will be applied. The compilation makes use of Apache
Calcite [21] .

There is one significant difference however between those two ways for accessing static data: Using
SQL operators, the whole dataset needs to be available to the streaming engine, where the latter
applies the query plan in memory and returning back the results. The only exception is for SQL-
compatible data management systems, where the whole query can be pushed down to the source
via a Java DataBase Connection (JDBC) connection. In fact, in that cases, it is the database itself that
takes care about the execution of the statement and returns back the result set, which will be
further transformed to a tabular format, thus initializing a Table instance of the corresponding API.
In all other cases, the dataset has to be fetched first from the source, and the execution plan needs
to be handled by Flink in memory. An alternative approach is the implementation of specific
connectors that can be used by the streaming engine using the language-integrated query API. As
mentioned before, the query API provides various relational operations such as selections, projects
etc, and the connector implements those operators for data access. As a result, the dataset does not
have to be loaded in memory. Instead, those operations are being executed in the target datastore
which filters out records and returns the results.

INFINITECH data management layer is SQL-compatible and implements the JDBC specification.
However, this requires the invocation of the query engine that introduces an inherit overhead due to
its footprint. Due to this, we plan to provide an INFINITECH Flink connector, which will implement all
operations supported by Flink for unified stream and batch processing. The benefit is twofold: firstly,
it will allow for direct access to the storage engine of the platform, bypassing the footprint
introduced by the query engine, and as a result, can support data ingestion in even higher rates.
What is more, the direct API of the data storage of INFINITECH has been designed to support the
distributed execution of aggregated operations. As a result, these types of operations can be pushed
down to the storage for efficient data retrieval. The following sections provide information about the
initial design of integration of the streaming engine of Flink with the INFINITECH data management
layer via those operators.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 31

5.1 Basic Concepts

The Table API has as its central concept the Table which serves as the input and output of
operations: an operator that performs a project will take as input an instance of a Table and will
return the projected result in another instance of a Table. Tables can be either permanent or
temporary. The former allows to be visible across several sessions that might be span across
different nodes, while the latter is only visible during the lifecycle of a single session.

In order to create a table, there are two different ways: one is to use the native API that allows you
to use the language-integrated query, which composes the operators by using native language, or by
using an SQL statement and pass the query string to the framework. The following code snippet
shows how to construct a table with the native API.

// create a Table
tableEnv.connect(...).createTemporaryTab le("Orders");

// scan registered Orders table
Table orders = tableEnv.from("Orders");

// compute revenue for all customers from France
Table revenue = orders
 .filter($("cCountry").isEqual("FRANCE"))
 .groupBy($("cID"), $("cName")
 .select($("cID"), $("cName"), $("revenue").sum().as("revSum"));

While this code snippet produces an equivalent result, using an SQL statement:

// create a Table
tableEnv.connect(...).createTemporaryTable("Orders");

// scan registered Orders table
Tabl e orders = tableEnv.from("Orders");

// compute revenue for all customers from France
Table revenue = tableEnv.sqlQuery(
 "SELECT cID, cName, SUM(revenue) AS revSum " +
 "FROM Orders " +
 "WHERE cCountry = 'FRANCE' " +
 "GROUP BY cID, cName"
);

The difference between these two code snippets is the way they retrieve data from the underlying
datastore. In the second example, there is an SQL string that will get all orders from the country
whose name is FRANCE, and will return the overall revenue of all customers living in that country. To
do so, it will need to use the FROM clause in order to do a selection over the ORDERS datatable, then
apply a filter condition via the WHERE clause and the GROUP BY clause to group the summary of the
values over those columns. Finally, it will project the two columns in the GROUP BY and will apply
the aggregation operator over the revenue column. This query can be pushed down via the JDBC in
cases Flink is integrated with an SQL compatible data source. Otherwise, it will grab all data from the
table ORDERS first, and then it will apply this query over the dataset that has been fetched in
memory.

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 31

In the other code snippet however, the same query is expressed via the native API. We can see the
involved operators are being constructed step-by-step. Given that, a filter will be applied on the
specific column over the table that have been defined, which will get data from the table ORDERS.
Then, the group by method will be invoked whose result will be projected by the select method,
which also applies the aggregation operation.

Apart from reading data, the API provides the ability to manipulate and persist data to a persistent
storage. The following code snippet provides an example.

// create an output Table
final Schema schema = new Schema()
 .field("a", DataTypes.INT())
 .field("b", DataTypes.STRING())
 .field("c", DataTypes.BIGINT());

tableEnv.connect(new FileSystem().path("/path/to/file"))
 .withFormat(new Csv().fieldDelimiter('|').deriveSchema())
 .withSchema(schema)
 .createTemporaryTable("CsvSinkTable");

// do something and get the result
Table result = ...

// emit the result Table to the registered TableSink
result.executeInsert("CsvSinkTable")

This code creates a temporary table called CsvSinkTable that is mapped to a csv file in the storage
and has the schema that has been defined at the first lines of the code. After doing a process, the
data analyst retrieves the data and puts them into an instance of the Table, and then invokes the
executeInsert method to actually store data into the csv file.

5.2 Stream Correlation with Data At-Rest

Apache Flink provides two APIs that allows the manipulation of streaming data, which are the
DataStream and DataSet APIs. Table API and SQL queries can be easily integrated with and
embedded into DataStream and DataSet programs. As a result, the data analyst can write a query to
retrieve data from an external data table that is stored in a relational database management system
and do a pre-processing: apply some filters, aggregate data that are grouped by a number of
columns and project specific columns to the temporary table. The data stored in the table can be
further processed with either the two of the DataStream or DataSet APIs. The same can happen vice
versa: it is possible for a DataStream or DataSet program to be used as an operand in an operator
that is part of the Table API.

Being able to transform those two APIs gives the ability for the streaming engine to correlate data of
those two different types: streaming data with data at-rest. As data stored in the table can be
further processed by the streaming APIs, it allows data coming from a stream to make use of static
information that can be retrieved by query statements over a persistent data source. Having said
that, we can retrieve the average value of the finance transactions of a user during the past week, by
executing an analytical query to the target database, and retrieve this result via a Table. This value
can be later on used by the streaming APIs to check if the value of a current finance transaction is

D3.6 – Data Streaming and Data at Rest Queries Integration - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 31

bigger than the amount of money that this costumer is usually performing, that might trigger an
alert.

In the same sense, an operator of the Table interface might be able to insert data to a persistent
storage. The ability of the Table to consume data of the streaming APIs allows for the direct
ingestion of data streams into the storage layer. As it has been already mentioned, the insert
operation usually puts data into a data queue, and a consumer process periodically sends micro
batches to the target datastore. In INFINITECH, we have designed our insert operator to directly
ingest data to the storage engine of the platform, taken advantage of its ultra-scalable transactional
manager that allows to server operational workloads in very high rates.

Moreover, in order to correlate stream and batch data, it is not enough to simple be able to
transform the different types of APIs to another, but also providing a framework and operators that
can be applicable to both types of data. Their main differences are that batch data are bound, while
streaming is usually unbound, batch data pre-exist while streaming data continuously fills the query
and batch data produces static results, while streaming data continuously change the result as the
stream goes through the operator. In order to overcome those differences, there has been
introduced the concept of virtual views. All input of the operators implements such a virtual view so
that the execution of the operator can be transparent from the implementation of the view. More
precisely, in order to deal with streaming data, there has been proposed the Materialized view or
Dynamic Table. The latter caches the result of the query such that the query does not need to be
evaluated each time the view is being accessed. However, the data in the view can be outdated
when a data modification operator arrives into the stream. In order to overcome this, different
techniques can be applied that updates the materialized view, by listening to changes by data
modification operators of the stream. Dynamic tables are changing over time in contrast to the static
tables that represent batch data. Due to this, queries targeting streaming data are often called
Continuous Queries, which never terminate and produce those dynamic tables as the result. This
means that those queries continuously update their result in order to reflect the changes on its
dynamic input tables.

Taking into account that the maintenance of the updates coming from the stream in the dynamic
table must be done in memory, this concept comes with several restrictions, mainly regarding
computational and memory usage. Continuous queries are evaluated on unbounded streams and
are often supposed to run for weeks or months. As a result, the total amount of data that a
continuous query processes can be very large. Similarly, other queries require re-computing and
updating a large fraction of the emitted result rows even if only a single input record is added or
updated.

Dynamic tables are the core concept of Flink’s Table API and SQL support for streaming data. In
contrast to the static tables that represent batch data, dynamic tables are changing over time. They
can be queried like static batch tables. Querying dynamic tables yields a Continuous Query. A
continuous query never terminates and produces a dynamic table as result. The query continuously
updates its (dynamic) result table to reflect the changes on its (dynamic) input tables. Essentially, a
continuous query on a dynamic table is very similar to a query that defines a materialized view.

