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Executive Summary

The goal of task T3.3 “Integrated Querying of Streaming Data and Data at Rest” is to implement a
data framework that can provide a unified manner for accessing data that can be considered both
streaming and data-at-rest at the same time, while being able to correlate data coming from those
different types of data sources. This data framework aims to overcome the existing obstacles that
are observed in current solutions. Even if currently available solutions state that they enable the
provision of real-time business intelligence (Bl), they often provide something near real-time due to
the inherit limitations of the tools they rely on. The important challenge that INFINITECH unified
query framework aims to solve is to provide actual real-time Bl that is crucial in a variety of use cases
that the INFINITECH platform supports, such us real-time risk assessment, transaction fraud
detection, money laundry, etc.

The INFINITECH unified query processing framework will rely on one of the popular streaming
processing tools, extending it with SQL operators that will enable the correlation of streaming data
with data at-rest, removing the barriers for real-time processing. This will be achieved by reading
data from the platform’s data management layer and performing cost-demanding analytical
operations in cost effective manner that can be used as a streaming operator, or by allowing the
data ingestion of streaming data to the persistent storage, modifying its content while at the same
time, ensuring transactional semantics. Towards this direction, this task will exploit the outcomes of
other tasks related with the data management layer of INFINITECH, and more precisely, the ultra-
scalable transactional management and the Hybrid Transactional and Analytical Processing (HTAP)
provision, the declarative online data aggregations, and potentially the polyglot extensions of the
platform. The outcome of those tasks will constitute the basic pillars that will be utilized by the
operators implemented in the scope of this task, which will allow the unified query processing
framework to provide real-time BI.

This deliverable describes the initials steps required for the INFINITECH unified query processing
framework design and implementation. At this phase of the project, an initial analysis of the state-
of-the-art in the field of data streaming processing has been conducted in order to decide which of
the proposed solutions would be better suited to be used as the core of the framework. Based on
this decision, an initial design of the operators that will extend the proposed data streaming
processing has been made, that will drive the actual implementation during the second phase of the
project. This was necessary as those operators rely on the outcome provided by other technical tasks
of WP3 and WP5, leading the implementation to be initiated at the second phase of the project
(M12-M20). As a result, two more versions of this deliverable will be released at M20 and M27 that
will report the additional work that will be carried out in the corresponding phases.
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1. Introduction

Finance and insurance institutions utilize static data that are persistently stored in a database
management system, often called as data-at-rest, in order to extract information via analytical tools
and Al algorithms that rely on historical data. Therefore, their analysis is executed as a batch
process, once the tool or algorithm is being invoked, relying on the data that are persistently stored
in the datastore at that exact point in time, which does not always reflects the situation at the same
point in time. In addition, as explained in D3.1, organizations that utilize Big Data tend to use Extract,
Transform, Load (ETLs) periodically in order to move data from their operational datastores to a
data warehouse, where they perform their analytics. As a result, the latter make use of a snapshot of
the dataset that was taken at the specific point in time when the ETL process moves the data to the
warehouse. This can pose an issue in cases where an enterprise needs to be aware of potential risks
or opportunities in order to adapt and exploit them at the time when they happen. In finance and
insurance sectors there are many cases where the time window to perform an action is narrow and
performing analysis on yesterday’s data can hinder effective courses of action. Such examples in the
finance sector include risk assessment analysis, where a financial organization might need to provide
detailed risk information regarding the management of an asset in real-time, otherwise an
investment opportunity could be lost. Another example can be noticed in fraud detection
mechanisms, where the identification of a fraud transaction must be done exactly the moment when
the transaction takes place, since analyzing the historical transactions of the previous day could
prove ineffective. Moreover, in the scope of the insurance sector, taking loT sensor data coming
from devices, either from vehicles or from people’s smart phones could prove crucial to occur in real
time since utilizing historical data could result in losing the opportunity to extract vital information at
the time that the data are produced. Those scenarios are observed often in financial institutions and
the insurance sector and pose typical challenges to many of the organizations of these sectors. They
are also listed as typical user requirements from the pilots of the INFINITECH project, as they have
been addressed in the corresponding deliverables of T2.1.

Due to the need of real-time data analytics, streaming processing systems have been widely used
during recent years. The emergence of loT, where data are being continuously produced by various
sources (either a hardware sensor that is physically installed or data generated after an online
transaction) has led organizations having different types of streams being accessed by their systems.
In order to utilize this new types of data, various data streaming infrastructures have been
developed that allow application developers and data analysts to perform some query processing on
top of the stream. In contrast with traditional database management systems where data are
persistently stored and considered at-rest, where queries are submitted dynamically and produce
results in a request-response manner, the nature of the streaming processing is different. Queries
are statically submitted and make use of dynamic data (coming from the stream) often called data
in-flight, and thus, they are considered continuous. As queries are not dynamic, there is no request-
response type of interaction, rather than once a continuous query has been submitted, it
continuously generates results. Queries might be stateless where no previous information might be
needed. Examples can be found in scenarios where a financial organization needs to check if the
amount of an online transaction exceeds a specific threshold. In case it does, this event might trigger
additional actions from the organization to examine the transaction details and potential fraud
activities. Typically, those queries only require comparison of the current data coming from the
stream with a static value. However, as data is being processed in real-time, it allows the financial
institution to react instantly, without having to perform this type of analysis on obsolete data
coming from a snapshot taken in the past. Additionally, continuous queries might be stateful and
require some timestamp information that has been collected from data being passed through the
stream channel previously. Usually, a time window is being maintained that allows for aggregated
operations to take place. An example will be to produce an alert if the value of a data element
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coming through the stream is bigger than the average value of all data elements that have been
passed during the last minute, hour, etc. This reveals potential current trends and might be useful in
scenarios, for example, where a lot of investors choose to buy a specific stock or other investment
product, or if clients decide to massively withdraw money from their accounts, or move their money
to other products, which might be the case of a bank run due to a potential currency devaluation as
the global economic crisis that started in 2008 showed. The streaming processing framework
calculates the aggregated values of money transfer in the last minute or hour and might generate an
alert to the financial institution in case massive money transfer occurs. It is obvious that if the
financial institution had to rely on a periodic batch processes using other types of analytical tools on
an obsolete dataset, the results might be catastrophic for the institution which could face hazardous
liquidity issues.

It has been highlighted how those two different types of processing, data at-rest and streaming data,
can solve different types of problems addressed by the finance and insurance sector. Dynamically
submitted queries at data at-rest can feed machine learning (ML)/Deal learning (DL) algorithms
taking into account all historical data stored in a persistent medium like a data warehouse, but
cannot record changes or trends happening in real-time. On the other hand, static continuous
gueries can generate events to which an organization can respond immediately. However, they can
only rely on a narrow time window and cannot take into account the existence historical data. One
of the current challenges arising during recent years is the ability for query processing that involves
both worlds: data at-rest and streaming data. This can enable real-time business intelligence (BI)
where i) streaming processing can be combined with the results of an analytical processing or ii)
streaming data can be directly ingested in a data warehouse, and the Al algorithms can rely on fresh
data. However, both approaches come with their limitations and can only provide near real-time BI
due to various inherit obstacles. In order to collate streaming processing with aggregate/analytical
queries targeting data stored in a database, it requires the latter to be executed first, get the result,
and compare the result with the streaming data element on the fly. However, aggregate and
analytical queries on a dataset need a scan operation, meaning that the majority of a dataset must
be accessed first. Typically, these types of queries are costly, and therefore, cannot be used in
streaming processing, where the latency must be very low. To overcome this inherit obstacle,
traditional approaches often cache those results in memory and periodically update their values.
This breaks however the data consistency, which is of major importance in the financial sector, as
data is outdated. Ingesting data from a stream to a persistent storage and performing analytical
queries in the datastore itself, comes with other obstacles. Traditional database systems cannot
handle such an increased operational workload coming from a data stream, as they cannot scale out
effectively. Due to this, system architectures either rely on NoSQL database systems, losing however
transactional semantics and data consistency, or tend to add data coming from a stream to a data
gueue, and then periodically perform batch ingestion on the database. The latter approach leads to
the use of near real-time BI, while the pilot use cases of INFINITECH aim to go a step beyond and do
analytics on data, as they arrive.

The task T3.3 “Integrated Querying of Streaming Data and Data at Rest” aims to solve the mentioned
problems: providing a unified framework that allows application developers and data analysts to
perform analytics taking into account data elements coming from both worlds. This means
correlating streaming tuples with data at-rest in both ways: reading from a persistent storage and
correlating the results with data coming from a streaming channel and using data streams to update
and modify the contents of a persistent datastore.
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1.1. Objective of the Deliverable

The objective of this deliverable is to report the work that has been done in the context of the task
T3.3 at this phase of the project (M11). This task lasts until M27, and therefore, two more versions
will be released, extending and modifying when necessary the content of this document, following
the agile approach for system development and aiming to update the solution and implementation
with the current trends of the environment as the project progresses. The work that has been done
during this phase (M03-M11) was mainly focused on the experimentation of various streaming
processing frameworks that are currently being used in the industry, in order to decide which of
those engines the INFINITECH unified query processing framework will rely on. Based on this
preliminary work that was essential for this task, the initial design of the data operators that will
allow the correlation of data elements from both worlds took place. The correlations themselves are
relying on the outcomes of the various tasks that are related with the data management layer, as
their implementations provide the basis for the implementation of the task T3.3 to happen.
According to the designated plan, the actual implementation will take place the forthcoming period,
and this deliverable reflects the initial design at this phase of the project.

1.2. Insights from other Tasks and Deliverables

As the majority of the deliverables of WP3, the work that is reported in this document is based on
the overview description of the corresponding task T3.3, which has been further specified in more
detail at WP2, which is the fundamental work package that defines the overall requirements of the
whole platform. T2.1 defines the user stories of the pilots that drive the necessity of this task, while
T2.3 defines the specification of the overall technologies that INFINITECH provides and need to
interact with the unified query processing framework. T2.5 describes the available datasets that
need to be tackled by this component while T2.7 puts the component under the general context of
the INFINITECH Reference Architecture. Regarding the technical tasks of the project, T3.3 is relying
on scalable transactional processing of the INFINITECH data management layer, as described in the
corresponding deliverables of T3.1, along with the Hybrid Transactional and Analytical Processing
(HTAP) capabilities that this task provides. Moreover, as explained in the corresponding deliverables
of T3.2, the polyglot processing is an extension of the data management layer, and therefore, this
task can exploit its outcomes in order to correlate streaming data with data stored in external data
sources. In addition, T3.3 will also exploit the outcomes of T5.3 and its declarative live aggregation
mechanisms that will allow the execution of cost-demanding aggregation operations with O(1)
complexity, and hence, making it possible to correlate streaming data with this type of information.
Finally, T3.3 will provide valuable input to T3.4, whose scope is to provide automated parallelization
of data streams that will rely on the operators implemented in this task.

1.3. Structure

This document is structured as follows: Section 1 introduces the document and section 3 provides
concrete examples on how the outcomes of T3.3 can be utilized by the pilots of the INFINITECH
project. Then section 3 provides the state-of-the-art analysis of existing solutions for complex event
processing and data streaming frameworks, highlighting the existing barriers of those solutions to
provide real time business intelligence. Section 4 analyses how the technological achievements of
INFINITECH can be used as enablers to overcome those barriers. Based on the output reported in
sections 3 and 4, section 5 describes the design of the SQL operators that will be implemented in
order to extend the streaming processing framework to correlate streaming data with data at-rest.
Finally, section 6 concludes the document and addresses next steps.
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2. Relation with INFINITECH use case scenarios

In the fast-moving financial domain, it is critical to maintain up-to-date analytics over financial
markets. Such analytics are used by a wide range of both human and Al traders continuously
throughout each day. However, in practice, these analytics are not as simple as tracking a stock or
share price. Instead, more complex metrics are needed that compare real-time market changes with
long-term historical trends, whilst also incorporating the current position/exposure of the individual
trader. For example, a common metric used by financial traders around the world is Value at Risk,
which measures the potential risk of the trader’s current investments by analysing the variance of
the associated assets over different time horizons (that can involve years’ worth of data points).

Metrics like Value at Risk raise a number of computational challenges, as they require both real time
market data streams (data-in-flight) to remain current, but also need large quantities of historical
data (data-at-rest) to provide meaning in context. Decades of research into stable database solutions
have produced a range of good quality products to manage data-at-rest, including MongoDB,
MySQL, PostgresSQL, LeanXcale, among others. Meanwhile, although less mature, a number of
streaming platforms for processing data-in-flight have been under development over the last 10
years, such as Apache Storm or Apache Flink. However, the architectures of such databases and
streaming platforms are very different and are not designed to be compatible. Hence, developing
applications that require seamless integration of both databases and streaming platforms is very
difficult and requires significant specialized expertise.

Task 3.3 in general aims to make such integration easier for the applications within the financial
domain, by producing a framework for orchestrating the aggregation of data-in-flight (streaming
data) and data-at-rest (i.e. historical data within an SQL database).

2.1 Problem Dimensions

It is first worth noting that there is a large space of possible ways that an application developer
might want to aggregate data-in-flight with data-at-rest. For example, a streaming select involves
taking each item that arrives on an input stream and performing a SQL SELECT operation for that
item, before sending both the item and the query return on an output stream. Meanwhile, a
windowed timeseries function involves periodically performing a local analytics function on a small
streaming data window, writing the result to a database, and then retrieving the window timeseries
for a longer time period to calculate an aggregate measure. Furthermore, the appropriate solution
will also be based on a range of environmental factors, such as whether it is possible/desirable to
continuously store the incoming data streams, the available compute capacity that can be allocated
to each individual stream, along with expected storage and network latencies. Hence, to better
organize T3.3, we structure the problem along the following dimensions:
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Table 1: Problem Dimensions

Dimension Value Description
Processing Type Per-ltem The user is looking to augment an item that has
arrived on a stream with associated data in a
database
Windowed The user is looking to perform calculations over

a series of time windows, where a subset of
those windows is stored in a database

Outcome Writing True Once the calculation is finished, the outcome
needs to be stored in a database
False The calculation is read-only on the database
Stream Writing True The raw contents of the data stream will be

stored in a database

False The stream contents are not stored

Computation Locality | Streaming Platform All significant computation is performed within
the streaming platform (the database is used
only for basic data lookup)

Streaming Platform | Computation is shared between the streaming
& Database platform and database

Importantly, developing a technology that is able to solve all dimension combinations is out of the
scope of T3.3. Instead, we focus on a sub-set of dimension combinations that align with the
INFINITECH pilots that require such a technology, which we discuss in the next section.

2.2 The Case of Real time Risk Assessment in Investment Banking

The high-level aim of this case is to provide bank traders real-time information about financial assets
they may wish to trade, ultimately enabling improved decision making and hence profit margins for
their customers. Currently, trading information and future predictions are updated infrequently
(once a day), meaning that traders are unable to exploit rapidly changing market conditions. this
case should solve this issue by providing a solution that can aggregate market data, trends and
provide predicted risk/yield estimates that update in real-time.

Within the wider trading platform that this case supports, one component that requires data-in-
flight and data-at-rest to function is asset risk estimation. The goal of this component is to monitor
the stream of financial asset costs and the current exposure of the trader to those assets (i.e. how
much the trader has invested), and then calculates a range of risk metrics. This is used to help
traders track the short and long-term risks of particular investments or their broader portfolio.

To illustrate, we will use the example of one very common metric, Value at Risk (VaR). The aim of
VaR is to determine the potential loss for an asset and the probability that the loss will occur. The
primary input to VaR is the return on an asset (how profitable it is) over time. This is expressed by a
very large numerical timeseries spanning millions of data points per year for each asset. This is
combined with various parameters, such as the target time period to calculate VaR over, as well as
the current exposure of the trader. The calculation of VaR (and similar metrics) is costly, particularly
when calculating for long time periods with high datapoint counts, or if performing a significant
forward projection. Moreover, if the underlying return for an asset changes rapidly, then the trader
will want to be notified of the increased VaR (i.e. estimated risk) with very little latency, such that
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they can take remedial steps. However, constantly re-calculating VaR from first principles for
potentially hundreds of thousands of assets is not feasible.

On the other hand, it is possible to substantially reduce the cost of the VaR calculation through
incremental calculation of its constituent components (the mean and standard deviation of the asset
return timeseries) across smaller time windows. This can be achieved using a streaming platform
that buffers datapoints into fixed time windows and triggers processing once each window is full.
However, a streaming platform itself cannot safely store the resultant intermediate outcomes as
they are designed to be stateless. Hence, the intermediate outcome from each window needs to be
stored into a database and made accessible such that VaR can be rapidly calculated for a target time
period. The challenge then from the database side is to provide sufficiently fast writes for the new
windows as they are created, while also enabling very low-latency querying of the stored window
data for each asset such that VaR can be re-calculated for tens of thousands of assets minute-by-
minute.

Error! Reference source not found. illustrates the structure of this process for FX assets (currency
trading) when combining data-in-flight and data-at-rest. As we can see, a high-volume data stream
of currency prices continually arrives at the left hand side, comprised of <asset, timestamp, value>
tuples. This stream is then sub-divided into one stream per-asset. The streaming platform will then
buffer the updates for each currency price into fixed time windows (in this example a 5 minute
window length). Once the buffer period has elapsed, a trigger starts the calculation of the
intermediate components needed for VaR, i.e. the mean and standard deviation of the updates
within the window, that are then stored within a database. Depending on the desired variants of
VaR the user wants, the required window data is loaded from the database and those variants of
VaR are calculated and then emitted for downstream consumption by the user.

» FXHistory DB Position DB
Time Trigger {Past FX Mean/SDs) (Amount of FX held)
> min Rollng | New
T Means/sDs Means/SDs v
FX
Streams A EMEanSDITCay) - Rag  EVAR(Tday)” Rung

( EMean/SDEmin) - Sy EMean/SD(Tweek) — puug  EVaR(1week) — puu gy
ery 5 mi

Market Data %

Stream
(FX + costs)

— g VeSS

.—M’W—

Figure 1: Example of VaR calculation process for FX data streams

Considering the dimensions discussed earlier, this is a windowed process, i.e. it relies on
intermediate calculation over time windows, and the computation is primarily performed within the
Streaming Platform. Meanwhile, calculation outcomes are being written (means and standard
deviations), but the raw stream is not.

This is a proposed solution for a general case application coming from the insurance sector targeting
risk assessment analysis on real-time. However, we designed in a more generic manner in order to
apply the same patterns to other scenarios coming from both the insurance and finance sector.
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INFINITECH has 15 pilot cases, where many of them require streaming processing technologies, as
identified in the user stories provided by T2.1 Therefore, we will take advantage of those pilots
during the evaluation phase to verify if the proposed framework that we present in this deliverable
can be beneficial to them.
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3. State-of-the-Art Analysis on Data Streaming Technologies and
Complex Event Processing

Big data analytics is a key area for businesses and the public sector alike, enabling the analysis of
huge amounts of data to draw business insights and discover new, innovat